

Open Distance Learning

TCIT1023
Programming
Fundamentals

ROSNIZA BINTI A.

RAHIM

Module Writer: Rosniza Binti A. Rahim

Developed by: International College of Yayasan Melaka

i

ii

TABLE OF CONTENTS

Topic 1 Introduction to Programming Languages 1

 1.1 Low-level Languages

1.2 Procedural Languages

1.3 Object-Oriented Programming Languages and

Program Development Tools

1.4 Other Programming Languages and Program
Development Tools 4GL

1.5 Web Page Development
1.6 Multimedia Program Development

Summary
Key Terms

References

2
5

7

8

11
16

18
18

18

Topic 2 Program Development

 2.1 Introduction to Program Development 19
2.2 Program Development life Cycle 23

2.3 Algorithm-Pseudocode and Flowchart 25
2.4 Control Structure 29

Summary 35
Key Terms 36

References 36

Topic 3 Program Coding and Simple Input Output

 3.1 Parts of C++ Program 37

3.2 The cout object 42
3.3 Variables 47

3.4 C++ reserved Words 49
3.5 Variable Declaration 49

3.6 Literals 50

3.7 Integer Data types 53
3.8 The Char Data types 54

3.9 Variable Assignments 55
3.10 interactivity 57

Summary 57
Key Terms 64

References 64

Topic 4

Mathematical Operations

 4.1 Operators 65
4.2 Mathematical Expressions 66

4.3 Binary Arithmetic Operators 70
4.4 Arithmetic Expressions 72

 4.5 Assignment Statement
Summary

Key Terms
References

74
80

80
80

Topic 5

Making Decision
5.1 Relational Operators
5.2 Logic Operator

5.3 Introduction to Selection Control

Structure
5.4 If Statement
5.5 The If/else Statements
5.6 Menus

5.7 The Switch Statements
Summary

Key Terms
References

 81

82
 86

86

93
95

100
109
109

Topic 6

Looping
6.1 Introduction to Loop
6.2 The While Loop

6.3 Counters
6.4 The Do-While Loop

6.5 The For Loop
6.6 Keeping a Running Total

6.7 Sentinels

Summary
Key Terms

References

 110

111

118
119

125
134

136
141

141

141

Topic 7

Functions
7.1 Defining and Calling Functions
7.2 Functions Prototypes

7.3 Sending Data into a Function
7.4 Passing Data by Value

7.5 Returning a Value from a Function

Summary
Key Terms
References

 144

149

151
157

 160
169

169
169

iii

Topic 8 Arrays
8.1 Introduction to Arrays

8.2 Accessing Array Elements
8.3 Inputting and Outputting Arr

8.4 Array Initialization

8.5 Processing Array Contents
Summary
Key Terms

References

170
172

ray Contents 173

177
178

182
182
182

UNDERSTANDING COURSE GUIDE

Refer and understand this Course Guide carefully from the beginning to

the end. It describes the course a n d how you use the course material.

It suggests the learning time to complete the course successfully.

Referring the Course Guide will help you to clarify important contents

that you might miss or overlook.

ABOUT THE COURSE

TCIT 1023 Programming Fundamentals is subject for Diploma

Information Technology that offered by School of Engineering and

Computing Technology in ICYM. This course is worth 3 credit hours and

should be covered to 14 weeks

You should be acquainted with learning independently and being able to

optimize the learning modes and environment available to you. Make sure

refer right course material and understand the course requirements as

well as how the course is conducted.

LEARNING TIME SCHEDULE

It is a standard ICYM practice that learner accumulate 40 study hours for

every credit hour. As for this three-credit hour course, you are expected

to spend 120 study hours. Table 1 gives an estimation of how the 120

study hours could be accumulated.

iv

Table 1: Estimation of Student Learning Time

Distribution of

Student Learning

Time by Chapter

CLO

Teaching and Learning Activities

Face to Face Non-Face to

Face

(Independent

Learning)

Total

L

T

P

O

Chapter 1 1 2 1 3

Chapter 2 2 4 2 6

Chapter 3 3 4 2 4 2

Chapter 4 2 2 1 2 1

Chapter 5 3 4 2 4 2

Chapter 6 3 4 2 4 4

Chapter 7 2 4 2 4 2

Chapter 8 2 4 2 4 2

Sub-Total SLT 86

Continuous Assessment

%

Face to Face

Non-Face to

Face

(Independent

Learning)

Physical

Online

1 Test 20 3 5

2 Lab Skill 10 4 3

3 Project Assignment 20 1 5

4 Participant 3 2

Sub-Total SLT 26

Final Assessment

%

Face to Face Non-Face to

Face

(Independent

Learning)

Physical

Online

1 Final Examination 50 3 5

Sub-Total SLT 8

GRAND-Total SLT 120

v

given to

vi

COURSE LEARNING OUTCOME

By the end of this course, you should be able to:

1. List and categorized programming languages (PLO1, C1)

2. Discuss the usage of C++ syntax for sequence, selection and
repetition statement. (PLO2, C2)

3. Solve an application using C++ programming language to solve given
problems within a given time. (PLO3, C3A)

COURSE SYNOPSIS

This course is divided into 8 topics. The synopsis for each topic can
be listed as follows:

Topic 1 explain the concepts of program and programming and how the

programming can be done in certain phase. The discussion about the
programming Languages and program Development Tools 4GL.

Topic 2 explain the algorithms where student should understand how to

represent the algorithms in correct ways. They will exposed to the right
technique in creating algorithms for sequence, selection and repetition

structures of programming. There are two types of problem solving
technique, either using the flow chart or the pseudocode.

Topic 3 the Dev C++ software that will be used by he students for the

entire module, is shown through sample coding. The student should

understand the development environment for C++ language and try out
their first program. The concepts of data types and variable in programming

also introduced in this topic.

Topic 4 there are many types of operator such as arithmetic, relational and

logical operators. This topic provides an introduction to these operators and

also its usage.

Topic 5 introduced to the selection control structure which uses if and

switch statement. The example are given, so student can write program

using this control structures. The menu and usage of the break statement
is also introduced. The difference between selection structures is

students so that students can use it correctly.

Topic 6 This topic gives three types of repetition structure that is used in

C++ program, which are while, do-while and for statements. Examples are

given to students so that students can write the repetition structure with
the correct syntax

Topic 7 This topic will be introduced with the Functions. Functions are sub

programs in a C++ Program. To write a C++ program which is long,
functions are necessary so that every sub-program can be written

separately and tested separately. After all the sub programs are written, it

can be combined to make a complete program.

Topic 8 C++ provides the array, which stores fixed-size sequential

collection of elements of the same type. An arrays are used to store multiple

values in a single variable, instead of declaring separate variables for each
value.

LEARNING GUIDANCE

The learning guidance is important to understand before you go through
this module. Understanding the learning guidance will help you to organize
your study of this course in a more objective and effective way. Generally,
learning guidance for each topic is as follows:

Learning Outcomes: This part is to measurable, observable, and specific
statement that clearly indicates what you should know and be able to do
because of learning in each chapter. By go through each topic, you can
continuously gauge your understanding of the topic.

Self-Learning Material: To aid you in your subsequent learning and to
report on what you have learned. The activities are in-text questions (ITO)
and self-assessment questions (SAQ), assignment on each chapter of the
material to monitor and develop your own learning.

Activity: Question and activity within module can be constructed to put
back the dialogue between student and module in learning activity. With
the given question or task, you are encouraged to read the description
or explanation within a module, so you can answer the question or solve
the problem proposed.
You are encouraged to read since you realize that without reading the
description or explanation, you will not be able to answer the question
or the assignment. Text question is applied to you to pay attention to a
certain problem rather than to assess the learning progress.
Self-assessment question is such a task that requires written answer

vii

form you. If you complete the task, you are asking to check your answer
with the answer key provided in the module.
Self -assessment is be developed in various form of test questions, there
are easy question, fill in the blank, multiple choices, true-false and
matching.

Summary: You will find this part at the end of each topic. This
component helps you to recap the whole topic. By going through the
summary, you should be able to gauge your knowledge retention level.
Should you find points in the summary that you do not fully understand,
it would be a good idea for you to revisit the details in the module.

Key Terms: This component can be found at the end of each topic. You
should go through this component to remind yourself of important terms
or jargon used throughout the module. Should you find terms here that
you are not able to explain, you should look for the terms in the module.

References: The References section is where a list of relevant and
useful textbooks, journals, articles, electronic contents, or sources can
be found. The list can appear in a few locations such as in the Course
Guide (at the References section), at the end of every topic or at the back
of the module. You are encouraged to read or refer to the suggested
sources to obtain the additional information needed and to enhance your
overall understanding of the course.

ASSESSMENT METHOD
Please refer to ICYM E Learning

viii

Introduction to Programming Language

To create a program, programmers sometimes write, or code, a program’s

instructions using a programming language. A programming language is a

set of words, abbreviations, and symbol that enables a programmer to

communicate instructions to a computer. Several hundreds programming

languages exist today. Each language has its own rules for writing the

instructions. Languages are often designed for specific purposes, such as

scientific applications, business solutions, or Web page development.

Two types of languages are low-level and high-level. A low-level language

is close to the level of the computer, which means it resembles the numeric

machine language of the computer more than the natural language of

humans. A low-level language is a programming language that is machine

dependent. A machine dependent language runs on only one particular type

of computers.

The easiest languages for people to learn are high-level languages. They

are call “high-level” because they are closer to the level of human-

1

TOPIC

1

Introduction to Computer System

LEARNING OUTCOMES

By the end of topic, you should be able to:

Define the meaning of programming languages.

List the program development Tools 4GL

readability than computer-readability. High-level languages often are

machine independent. A machine independent language can run on many

different types of computers and operating systems.

Low-Level languages

Two types of low-level languages are machine languages and assembly

languages. Machine language, known as the first generation of

programming languages, is the only language the computer directly

recognizes. Machine language instructions use a series of binary digits (1s

and 0s) or a combination of numbers and letters that represents binary

digits. The binary digits correspond to the on and off electrical states.

Coding in machine language is tedious and time-consuming With an

assembly language, the second generation of programming languages, a

programmer writes instructions using symbolic instructions codes.

Assembly languages also use symbolic addresses. A symbolic address is a

meaningful name that identifies a storage location. Assembly languages

can be difficult to learn. In addition, programmers must convert an

2

1.1

A computer program is a set of

instructions that directs a

computer to perform a task.

A computer programmer

creates and modifies computer

programs

assembly language program into machine language before the computer

can execute, or run, the program.

That is, the computer cannot execute the assembly source program. A

source program is the program that contains the language instructions, or

code, to be converted to machine language. To convert the assembly

language source program into machine language, programmers use a

program called assembler.

A sample machine

language program, coded

using hexadecimal number

system

3

Checkpoint 1.1

Instructions: Find the true or false statement below. Then, rewrite

the remaining false statements so they are true.
1. Low-level languages often are machine independent.

2. Machine language and assembly language are types of low-level

language.
3. The easiest languages for people to learn are high-level

languages

An assembly language

payroll program

4

Procedural languages

The disadvantages of machine language and assembly language (low-level)

languages led to the development of procedural languages in the late 1950s

and 1960s. In a procedural language, the programmer writes instructions

that tell the computer what to accomplish and how to do it.

With a procedural language, often called a third-generation language

(3GL), a programmer uses a series of English-like words to write

instructions. For example, ADD stands for addition and PRINT means to

print.

C The C programming language, developed in the early 1970s by

Dennis Ritchie at Bell Laboratories, originally was designed for writing

system software. Today, many programs are written in C. C run on almost

any type of computer with any operating system, but it is used most often

with the UNIX and Linux operating system.

COBOL COBOL (COmmonBusiness-Oriented Language) is designed for

business applications, but easy to read because of the English-like

statements.

5

1.2

Most program

development

tools are IDEs

IDE

(integrated development environment)

includes tools for building graphical

interfaces, an editor for entering program

code, a compiler and/or interpreter, and a

debugger (to remove errors, which is

discussed later in the chapter).

Works well in

RAD environment

RAD

(Rapid Application Development) is

a method of developing software, in

which the programmer writes and

implements a program in segments

instead of waiting until the entire

program is completed.

An excerpt from a COBOL payroll program. The code shows the computations for regular time pay, overtime pay,

and gross pay; the decision to evaluate the overtime hours; and the output of the gross pay.

OOP An object-oriented programming (OOP) language allows

programmers the ability to reuse and modify existing objects. Other

advantages of OOP include:

Java Java is an object-oriented programming language developed by

Sun Microsystems. Java may be used to develop programs that run over

the Internet, in a Web browser. Java uses a just-in-time compiler to

convert the machine-independent code into machine-dependent code

that is executed immediately. Programmers use various Java Platform

6

Objects can be

reused

Programmers

create

application faster

implementations, developed by Sun Microsystems, which provide

development tools for creating programs for all sizes of computers.

A portion of Java program and the window the program displays

Object-Oriented Programming
Languages and Program Development
Tools

The Microsoft .NET Framework allows almost any type of program to run

on the Internet or an internal business network, as well as computers and

mobile devices. Similarly ASP.NET is a Web application framework that

provides the tools necessary for the creation of dynamic Web sites.

Using .NET and/or ASP.NET, programmers easily can develop Web

applications, Web services, and Windows programs. Examples of languages

that support .NET include C++, C#, Visual Basic, Delphi, and Power Builder.

The following sections discuss each of these languages.

i. C++ is an object-oriented programming language that is an
extension of the C programming language. Additional features for
working with objects, classes, events, and other object-oriented
concepts. Programmers commonly use C++ to develop database and

Web applications.

7

1.3

ii. C# is based on C++ and was developed by Microsoft.

iii. Visual Studio is Microsoft’s suite of program development tools

☼ Visual Basic is based on the BASIC programming language

☼ Visual C++ is based on C++

☼ Visual C# combines the programming elements of C++ with an

easier, rapid-development environment

iv. A visual programming language is a language that uses a visual or

graphical interface for creating all source code.

v. Borland’s Delphi is a powerful program development tool that is ideal

for building large-scale enterprise and Web applications in a RAD
environment.

vi. PowerBuilder is a powerful program development RAD tool. Best

suited for Web-based, .NET, and large-scale enterprise object-
oriented applications.

Others Programming Languages and
Program Development Tools 4GL

A 4GL (fourth-generation language) is a nonprocedural language that

enables users and programmers to access data in a database. With a

nonprocedural language, the programmer writes English-like instructions

or interacts with a graphical environment to retrieve data from files or a

database. Many object-oriented program development tools use 4GLs. One

popular 4GL is SQL. SQL is a query language that allows users to manage,

update, and retrieve data in a relational DBMS.

Classic Programming Languages in addition to the programming

languages discussed on the previous languages discussed on the previous

pages, programmers sometimes use the language listed, which were more

popular in the past than today.

8

1.4

9

Ada Derived from Pascal, developed by the U.S. Department of Defense, named after
Augusta Ada Lovelace Byron, who is thought to be the first female computer
programmer.

ALGOL ALGOLrithmic Language, the first structured procedural language

APL A Programming Language a scientific language designed to manipulate tables of
numbers.

BASIC Beginners All-purpose Symbolic Instructions Code, developed by John Kemeny
and Thomas Kurtz as a simple, interactive problem-solving language.

Forth Similar to C, used for small computerized devices.

FORTRAN FORmulaTRANslator, one of the first high-level programming languages used for
scientific applications.

HyperTalk An object-oriented programming language developed by Apple to manipulate
cards that can contain text, graphics, and sound.

LISP LISt Processing, a language used for artificial intelligence applications.

Logo An educational tool used to teach programming and problem solving to children

Modula-2 A successor to Pascal used for developing system software.

Pascal Developed to teach students structured programming concept, named in honor
of Blaise Pascal, a French mathematician who developed one of the earliest
calculating machines.

PILOT Programmed Inquiry Learning Or Teaching, used to write computer-aided
instruction programs.

PL/1 Programming Language One, a business and scientific language that combines
many features of FORTRAN and COBOL.

Prolog PROgrammingLOGic, used for development of artificial intelligence applications

RPG Report Program Generator, used to assist businesses with generating reports and
access/update data in databases.

Smalltalk Object-oriented programming language.

Classic Programming Languages

Macros A Macro is a series of statements that instructs a program how

to complete a task. Macros allow users to automate routine, repetitive, or

difficult tasks in application software such as word processing, spreadsheet,

or database programs. That is, users can create simple programs within

the software by writing macros. You usually create a macro in one of two

ways:

i. record the macro – if you want to automate a routine or repetitive

task such as formatting or editing. A macro recorder is similar to

movie camera because both record all actions until turned off.

ii. write the macro – when you become familiar with programming
techniques, you can write your own macros instead of recording

them.

Application Generators An Application Generator is a program

that creates source code or machine code form a specification of the

required functionality. When using an application generator, a programmer

or user works with menu-driven tools and graphical user interfaces to

define the desired specifications. Application generators most often are

bundled with or are included as part of a DBMS. An application generator

typically consists of a report writer, form, and menu generator.

Application Generator : A form design and the resulting filled-in form created with Microsoft Access

10

Web Page Development

The designers of Web pages, known of Web developers, use a variety of

techniques to create Web pages. The following sections discuss these

techniques.

HTML and XHTML HTML (Hypertext Markup Language) is

a special formatting language that programmers use to format documents

for display on the Web. XHTML (extensible HTML) is a markup language

that allows Web sites to be displayed more easily on mobile devices.

Portion of XHTML program

11

1.5

Portion of resulting Web page

The portion of XHTML code in the top figure generates a portion of a Web page shown in the bottom figure

XML and WML XML (Extensible Markup Language) is an

increasingly popular format for sharing data that allows Web developers to

create customized tags and use predefined tags to display content

appropriately on various devices. XML separates the Web page content

from its format, allowing the Web browser to display the contents of a Web

page in a form appropriate for the display device. For example, a smart

phone, a PDA, and a notebook computer all could display the same XML

page or use different formats or sections of the XML page.

Wireless devices use a subset of XML called WML. WML (wireless markup

language) allows Web developers to design pages specifically for

microbrowsers. Many smart phones and other mobile devices use WML as

their markup language.

Scripts, Applets, Servlets, and ActiveX Controls Markup

Languages tell a browser how to display text and images, set up lists and

option buttons, and establish links on a Web page. By adding dynamic

content and interactive elements such as scrolling messages, animated

graphics, forms, pop-up windows, and interaction, Web pages become

much more interesting. To add these elements, Web developers write small

programs called scripts, applets, servlets, and ActiveX controls. These

programs run inside of another program. This is different from programs

12

discussed thus far, which are executed by the operating system. In this

case, the Web browser executes these short programs.

One reason for using scripts, applets, servlets, and ActiveX controls is to

add special multimedia effects to Web pages. Examples include animated

graphics, scrolling messages, calendars, and advertisements. Another

reason to use these programs is to include interactive capabilities on Web

pages.

Scripting Languages Programmers write scripts, applets, servlets, or

ActiveX controls using a variety of languages. These include some of the

languages previously discussed, such as Java, C++, C#, and Visual Basic.

Some programmers use scripting languages. A scripting language is an

interpreted language that typically is easy to learn and use. Popular

scripting languages include JavaScript, Perl, PHP, Rexx, Tcl, and VBScript.

☼ JavaScript is an interpreted language that allows a

programmer to add dynamic content and interactive elements

to a Web page. These elements include alert messages,

scrolling text, animations, drop-down menus, data input forms,

pop-up windows, and interactive quizzes.

☼ Perl (Perl Extraction and Report Language) originally was

developed by Larry Wall at NASA’s Propulsion Laboratory as a

procedural language similar to C and C++. The latest release

of Perl, however, is an interpreted scripting language. Because

Perl has powerful text processing capabilities, it has become a

popular language for writing scripts.

☼ PHP which stands for PHP: Hypertext, Preprocessor is a free,

open source scripting language. PHP is similar to C, Java, and

Perl.

☼ Rexx (REstructuredeXtendedeXecutor) was developed by Mike

Cowlishaw at IBM as a procedural interpreted scripting

language for both the professional programmer and the

nontechnical user.

☼ Tcl (Tool Command Language) is an interpreted scripting

language created by Dr. John Outershout and maintained by

Sun Microsystem Laboratories.

13

☼ VBScript (Visual Basic, Scripting Edition) is a subset of the

Visual Basic language that allows programmers to add

intelligence and interactivity to Web pages. As with JavaScript,

Web developers embed VBScript code directly into an HTML

document.

Dynamic HTML Dynamic HTML (DHTML) is a newer type of HTML

that allows Web developers to include more graphical interest and

interactivity in a Web page. Typically, Web pages created with DHTML are

more animated and responsive to user interaction. Colors change, font sizes

grow, objects appear and disappear as a user moves the mouse, and

animations dance around the screen.

Ruby on Rails Ruby on Rails is an open source framework that

provides technologies for developing object-oriented, database-driven Web

sites. Ruby on Rails is designed to make Web developers more productive

by providing them an easy-to-use environment and eliminating time-

consuming steps in the Web development process.

Web 2.0 Program Development Web 2.0 sites often use RSS. Ajax

which stands for Asynchronous JavaScript and XML, is a method of creating

interactive Web applications designed to provide immediate response to

user requests. Instead of refreshing entire Web pages, Ajax works with the

Web browser to update only changes to the Web page. This technique saves

time because the Web application does not spend time repeating sending

unchanged information across network.

Ajax combines several programming tools: JavaScript or other scripting

language, HTML or XHTML, and XML. Examples of Web sites that use Ajax

are Google Maps and Flickr.

Most Web 2.0 sites also use APIs so that Web developers can create their

own Web applications. An API (application program interface) is a collection

of tools that programmers use to interact with an environment such as a

14

Web site or operating system. Mapping Web sites, for example, include APIs

that enable programmers to integrate maps into their Web sites.

Google Maps provides tools for programmers to integrate APIs into their Web sites

Web Page Authoring Software You do not need to learn HTML to

develop a Web page. You can use Web page authoring software to create

sophisticated Web pages that include graphical images, video, audio,

animation, and other special effects. Web page authoring software

generates HTML and XHTML tags from your Web page design.

Four Web page authoring programs are:

☼ Dreamweaver, by Adobe System, is a Web page authoring program

that allows Web developers to create, maintain, and manage
professional Web sites.

☼ Expression Web, is Microsoft’s Web page authoring program that
enables Web developers to create professional, dynamic, interactive

15

Web sites. Expression Web developers to combine interactive content

with text, graphics, audio, and video.
☼ Flash, by Adobe Systems, is a Web page authoring program that

enables Web developers to combine interactive content with text,
graphics, audio, and video.

☼ SharePoint Designer is a Web page authoring program that is part

of the Microsoft Office and SharePoint families of products.

Multimedia Program Development

☼ Multimedia authoring software allows programmers to combine text,

graphics, animation, audio, and video in an interactive presentation.
Many developers use multimedia authoring software for computer-
based training (CBT) and Web-based training (WBT). Popular
multimedia authoring software includes ToolBook and Director.
Many businesses and colleges use ToolBook to create content for
distance learning courses.

16

1.5

1. A program written in a high -level language is translated

into machine code. This is so that it can be processed by

a computer. Name one type of translator that can be

used. Describe how your answer to part(b) translate this

program.

2. High level languages can be compiled or interpreted, give

two difference between a compiler and an interpreter.

Checkpoint 1.2

Instructions: Find the true or false statement below. Then, rewrite the
remaining false statements so they are true.

1. The idea of inheritance makes object-oriented programming more
reusable then code generated by top-down design.

2. Java is the ideal development language, which is why other

programming languages are beginning to lose their importance.

3. Prototyping is a form of rapid application development (RAD), which
enables programmers to build software that executes incredibly

Quiz Yourself Online: Do Self Test in the E-Learning

17

KEY TERM

SUMMARY

• Introduced to the concept of programming fundamentals.

• Two common types of low level programming languages are assembly

language and machine language.

• Introduced with other programming languages and program

development Tools 4GL

Self Assessment

Exercise 1 eLearning

Programming language Source program

computer programmer assembler

Computer program Third-generation language

Machine languages Web developers

Assembly language Scripting language

REFERENCEES

1. Tony Gaddis, Starting Out with C++ - Early Objects (10th edition) ,Pearson,

2020.

18

System Development Life Cycle

A system is a set of components that interact to achieve a common goal.

An information system (IS) is a collection of hardware, software, data,

people, and procedures that work together to produce quality information.

An information system supports daily, short-term, and long-range activities

of users.

The type of information that users need often changes. When this occurs,

the information system must meet the new requirements. In some cases,

members of the system development team modify the current information

system. In other cases, they develop an entirely new information system.

System development is a set of activities used to build an information

system. System development activities often are grouped into larger

categories called phases. This collection of phases sometimes is called the

system development life cycle (SDLC). Many SDLCs contain five phases:

19

TOPIC

2

Program Development

LEARNING OUTCOMES

By the end of topic, you should be able to:

1. List the six process steps involved in developing a program.
2. Solve problems by using two algorithm representative

techniques.

3. Build a flow chart using the sequential, selective and

repetitive control structure.
4. Build a pseudocode using the sequential, selective and

repetitive control structure.

2.1

1. Planning

2. Analysis

3. Design

4. Implementation

5. Operation, Support, and Security

Each system development phase consists of a series of activities, and the

phases form a loop. In theory, the five system development phases often

appear sequentially, as shown in next figure. In reality, activities within

adjacent phases often interact with one another – making system

development a dynamic iterative process.

Planning Phase

The planning phase for a project begins when the steering committee

receives a project request. During the planning phase, four major activities

are performed:

(i) Review and approve the project request;

(ii) Prioritize the project requests;

(iii) Allocate resources such as money, people, and equipment to

approved projects; and

(iv) Form a project development team for each approved project.

20

1. Planning

☼Review project request

☼Prioritize project request

☼Allocate resources

☼Form project development team

2. Analysis

☼Conduct preliminary investigation

☼Perform detailed analysis activities:
▪ Study

current
system

▪ Determine

5. Operation, Support, and Security

☼Perform maintenance activities

☼Monitor system performance

☼Assess system security

Ongoing Activities

☼ Project Management

☼ Feasibility assessment

☼ Documentation

☼ Data/information

3. Design

☼Acquire hardware and software, if

necessary.

☼Develop details of system

4. Implementation

☼Develop programs, if necessary

☼Install and test new system

☼Train users

☼Convert to new system

System development consists of five phases that form a loop. Several ongoing activities also take place throughout

system development.

Analysis Phase

The analysis phase consists of two major activities:

(i)Conduct a preliminary

investigation

(feasibility study)

To determine the exact nature of the

problem or improvement and decide

whether it is worth pursuing.

(ii) Perform detailed

analysis (logical

design)

Study how the current system works,

determine the users’ wants, needs, and

requirements; and recommend a

solution.

21

Design Phase

The design phase consists of two activities:

(i) If necessary, acquire hardware and software and

(ii) Develop all of the details of the new or modified information

system.

Implementation Phase

The purpose of the implementation phase is to construct, or build the new

or modified system and then deliver it to the users. Members of the system

development team perform four major activities in this phase:

(i) Develop programs

(ii) Install and test the new system

(iii) Train users, and

(iv) Convert to the new system

Operation, Support, and Security Phase

The purpose of the operation, support, and security phase is to provide

ongoing assistance for an information system and its users after the system

is implemented.

22

Program Development

Program development consists of a series of steps programmers use to

build computer programs.

The program development life cycle (PDLC) guides computer

programmers through the development of a program. The program

development life cycle consists of six steps.

1. Analyze Requirements

2. Design Solution

3. Validate Design

4. Implement Design

5. Test Solution

6. Document Solution

The Program Development Life Cycle consists of six steps that form a loop. The program development life cycle is

part of the implementation phase of the system development life cycle.

Program development is an ongoing process within system development.

Each time someone identifies errors in or improvements to a program and

requests program notifications, the Analyze Requirements step begins

again. When programmers correct errors (called bugs) or add

enhancements to an existing program, they are said to be maintaining the

23

2.2

program. Program maintenance is an ongoing activity that occurs after a

program has been delivered to users.

What Initiates Program Development?

As shown in figure before, system development consists of five phases:

planning; analysis; design; implementations; and operation, support, and

security. During the analysis phase, the development team recommends

how to handle software needs. Choices include modifying existing

programs, purchasing packaged software, building custom software in-

house, or outsourcing some or all of the IT operation.

If the organization opts for in-house development, the design and

implementation phases of system development become quite extensive. In

the design phase, the analyst creates a detailed set of requirements for the

programmers. Once the programmers receive the requirements, the

implementation phase begins. At this time, the programmer analyzes the

requirements of the problem to be solved. Thus, program development

begins at the start of the implementation phase in system development.

The scope of the requirements largely determines how many programmers

work on the program development. If the scope is large, a programming

team that consists of group programmers may develop the programs. If

the specifications are simple, a single programmer might complete all the

development tasks. Whether a single programmer or a programming team,

all the programmers involved must interact with users and members of the

development team throughout program development

By following the steps in program development, programmers create

programs that are correct (produce accurate information) and maintainable

(easy to modify).

24

25

Algorithm is a set of logical sequential steps used to solve the problem.

A flow chart is a graphical or symbolic representation of a process

Algorithm

2.3.1 Flow chart

Flow chart is made up of geometry nodes that represent processes. These

nodes are joined by arrows that will show the flow or continuity of the

activities. It is not only used in programming but also in other matters such

as loan approval. It will describe the whole process from the application,

checking for eligibility, if not eligible, applying again, and if eligible,

approval of application, and finally end of process.

There are many nodes/symbols that are used in a flow chart, but there are

used in a flow chart, but there are four symbols that should be basically

identified as shown in table below.

Symbol Meaning

Start/End

Input/Output

Process

Condition

Flow Chart Symbols

2.3

26

i) Start/End

Start

End

This symbol is used at the beginning and at the end

of the flow chart. For the whole flow chart, there

can only be one Start symbol and one End symbol.

One arrow will exit from the Start symbol, after

traversing through many different symbols; it will

enter the End symbol.

Only one arrow can exit from the Start symbol, but

many arrows can enter the End symbol.

ii) Input/Output

Read Name

Print Number

Input means data will be entered into the

computer. For example, name, age or address. Text

that is typed is called input.

Output is response from the computer. Text that is

displayed on the screen is called output. For

example, the message: “WELCOME” is output

Input/Output symbols are used when interacting

between user and computer. It is used to receive

information from users and providing information to

the users.

iii) Process

sales = price + profit

 Process symbol is used to represent an activity that

is being executed by the computer. It does not involve

input and output.

For example, sales=price + profit. Probably before this,

the user has entered the price and the profit values

(input). Now, the computer will get the sales value. Prior

to that, the calculation will be done by the computer to

get the sales value. This calculation process is

represented by the process symbol.

iv) Condition

Own a

N

 When a problem has two choices, the data

flow will have two branches. There is a

condition that will determine which branch to

Ybe selected. Usually, this symbol is used with

the statement “True/False” or “Yes/No”.

For example, the question, “Do you own a

car?” There are two answers only: “Yes” or

“No”.

This symbol is not used to get input but is

used to process the input. The question is in

the input symbol, but the input from the user

will be processed by the condition symbol.

Only one arrow will enter the symbol, and

there must be exactly two arrows exiting

from it, one representing Yes/True and the

other No/False.

All these symbols must be joined by an arrow. It is not possible to have a

symbol without any arrows. These arrows can only start at the Start

symbol, and end at the End symbol. Input/Output, process and condition

symbols must have in and out arrows. This means, when we follow the flow

of the arrows from the start till the end, there will not be a dead end. We

will move from one symbol to another until the end symbol is reached. Do

not allow any symbol without an out arrow from it except the End symbol.

It is reminded once again, only one Start symbol and only one out arrow

from it. This is where the activities start. Once traversing through the many

symbols, the arrow might branch off, nevertheless all the arrows must end

at the End symbol.

27

Pseudocode consists of short, English phrases used to explain specific

tasks within a program's algorithm

2.3.2 Pseudocode

Pseudocode is the representation of algorithm that resembles actual

program code. It does not use symbols to represent sequential steps, but

steps are written using natural language that explains the processing

involved in solving problems. The main reason in representing the problem

in this form is that it is more systematic and its logic is easier to understand.

To represent algorithm using pseudocode, we need to use the writing rules

as:

a) Every step in an algorithm should not have more than two actions.

b) Steps in an algorithm are executed in sequence.

c) The word Start shows that the process has started and the word End

or Stop is used to show that the process has ended.

d) The action that is allowed includes declaring variable names to

identify the set of variables that have a corresponding data type.

Types of data might be integer, real, character or others.

e) To give an initial value to a variable.

f) To use arithmetic symbols to state the addition, subtraction,

multiplication, division operations and brackets to show operation

priority.

28

The sequence control

structure shows one or more

actions followed by another

Control Structure

When programmers are required to design the logic of a program, they

typically use control structures to describe the tasks a program is to

perform. A control structure, also known as a construct, depicts the

logical order of program instructions. Three basic control structures are

sequence, selection, and repetition.

2.4.1 Sequence Control Structure

A sequence control structure shows one or more actions

following each other in order. Actions include inputs,

processes, and outputs. All actions must be executed; that is

none to be skipped. Examples of actions are reading a

record, calculating averages or totals, and printing totals.

29

2.4

Example : User enters two integer numbers. Computer will add these

two numbers and display its total.

Flow chart:

Start

Read num1, num2

total = num1 + num2

Display total

End

 Pseudocode:

Start

Read num1, num2

total = num1 + num2

Display total

End

2.4.2 Selection Control Structure

A selection control structure tells the program which action to take,

based on a certain condition. Two common types of selection control

structures are the if-then-else and the case.

When a program evaluates the condition in an if-then-else control

structure, it yields one of the two possibilities: TRUE or FALSE. If the result

of the condition is true, then the program performs one action. If the result

is false, the program performs a different action.

For example, the if-then-else control structure can determine if an

employee should receive overtime pay. A possible condition might be the

following: Is Hours Worked greater than 40? If the response is yes (true),

30

The if-then-else control structure

directs the program toward one

course of action or another based

on the evaluation of a condition.

The case control structure allows for more

than two alternatives when a condition is

evaluated

then the action would calculate overtime pay. If the response is no (false),

then the action would set overtime pay equal to 0.

With the case control structure, a condition can yield one of three or more

possibilities. The size of beverage, for example, might be one of these

options: small, medium, large, or extra large. A case control structure

would determine the price of the beverage on the size purchase.

Example : Discount of 10% is given to the customer, if the amount

purchased is more than RM1,000. If the amount purchased is less than

RM1,000, discount of 2% is given.

31

Flow chart: Start

Read amount

N Y

 amount >

total = amount –

(amount*0.02)

 total = amount –

(amount*0.1)

Pseudocode:

Start

Read amount

if (amount > 1000)
total = amount – (amount*0.1)

if not

end if

total = amount – (amount*0.02)

Display total
Stop

2.4.3 Repetition Control Structure

The repetition control structure enables a program to perform one or

more actions repeatedly as long as a certain condition is met. Many

programmers refer to this construct as a loop. Two forms of the repetition

control structure are the do.. while and do.. until.

32

Display total

End

The do-while control structure tests

the condition at the beginning of the

loop. It exits the loop when the result

of the condition is false

A do-while control structure repeats one or more times as long as a

specified condition is true. This control structure tests

a condition at the beginning of a loop. If the result of

the condition is true, the program executes the

action(s) inside the loop. Then, the program loops back

and tests the condition again. If the result of the

condition is still true, the program executes the

action(s) inside the loop again. This looping process

continues until the condition being tested becomes

false. At that time, the program stops looping and

moves to another set of actions.

The do-while control structure normally is used

when the occurrence of an event is not quantifiable or

predictable. For example, programmers frequently use the do-while control

structure to process all records in a file. A payroll program using a do-while

control structure to process all records in a file. A payroll program using a

do-while control structure loops once for each employee. This program stop

looping after it processes the last employee’s record.

The do-until control structure is similar to the do-

while but has two major differences: where it tests

the condition and when it stops looping. First, the do-

until control structures tests the condition at the end

of the loop. The action(s) in a do-until control

structure thus always will execute at least once.

The loop in a do-while control structure, by contrast

might not execute at all. That is, if the condition

immediately is false, the action or actions in the do-

while loop never execute. Second, do-until control

structure continues looping until the condition is true – and then stops. This

is different from the do-while control structure, which continues to loop

while the condition is true.

33

The do-until control structure tests the

condition at the end of the loop. It exits

the loop when the result of the

condition is true.

N Y

 counter

<=10

Display total

End

counter =

counter + 1

total =total +

counter

Pseudocode:

Start

total =0

counter =1

while (counter <=10)

total = total + counter

counter = counter +1

end while

Display total

End

Example : Add the integer numbers from 1 to 10and display the total.

Flow chart:

34

Start

total =0

counter =1

35

KEY TERM

ACTIVITY

Write the pseudocode two input two values for each staff in a private

company. The two values are the salary and a character value that

represent the staff performance for that particular year. The staff

performance will be represent by ‘C’ for excellent, ‘B’ for good and ‘L’

for non-performer. The pseudocode should be able to calculate and

display the salary increment for each staff, where the increment will

be calculate based on the performance: 12% increment for the

excellent staff, 8% for the good staff and there is no increment for the

non-performer.

Checkpoint 2.1

Instructions: Find the true and false statement below. Then, rewrite

the remaining false statements so they are true.

1. Three basic control structures are sequence, selection, and

pseudocode.

2. Programmers must convert an assembly language program into

machine language before the computer can execute, or run, the

program.

3. Programmers use a sequence control structure to show program

modules graphically.

4. A sequence control structure tells the program which action to take,

based on a certain condition.

Quiz Yourself Online: Do Self-Test in the E-Learning

System Pseudocode

Planning phase data

Program development Sequence

Algorithm Selection

Flowchart Repetition

REFERENCEES

2. Tony Gaddis, Starting Out with C++ - Early Objects (10th edition) ,Pearson,

2020.

SUMMARY.

• Algorithm can be divided into flow chart and pseudocode.

• Flow chart shows the flow or the sequence of activities clearly and logically.

• Pseudocode can help in writing program code quickly, as it resembles

program code.

• Input is all the information that is relevant and needed to execute a process.

• Output is the result that is needed.

• Selection structure is a structure design that gives a few choices during

execution.

• Repetition structure is a structure where one block of statements is executed

repeatedly.

36

PROGRAMS 3-1

TOPIC

3

Program Coding and Simple Input/Output

LEARNING OUTCOMES

By the end of topic, you should be able to:

1. Write simple C++ programs
2. Compile and execute C++ program and

3. Correct errors found in the programs.

The parts of a C++ Program

C++ programs have parts and components that serve specific purposes.

We will begin by looking at Program 3-1.

1 // A simple C++ program

2 #include <iostream.h>

3

4 int main ()

5 {

6 cout<< “Programming is great fun!”;

7 return 0;

8 }

9

37

3.1

The output of the program is shown below. This is what appears on the

screen when the program runs.

Let’s examine the program line by line. Here’s the first line.

// A simple C++ program

Comments help

explain what’s

going on

The // marks the beginning of a comment. The compiler ignores

everything from the double slash to the end of the line. That means you

can type anything you want on that line and the compiler will never

complain. Although comments are not required, they are very important to

programmers.

Line 2 :

#include <iostream.h>

Because this line starts with a #, it is called preprocessor directive. The

preprocessor reads your program before it is compiled and only executes

those lines beginning with a # symbol.

The # include directive causes the preprocessor to include the contents of

another file that is to be included. The word inside the brackets, iostream,

is the name of the file that is to be included. The iostream file contains code

that allows a C++ program to display output on the screen and read input

from the keyboard. Because this program uses cout to display screen

output, the iostream file must be included. The contents of the iostream

file are included in the program at the point the #include statement

appears. The iostream file is called a header file, so it should be included

at the head, or top, of the program.

38

Program Output

Programming is great fun!

Line 4 :

int main ()

This marks the beginning of a function. A function can be taught of as a

group of one or more programming statements that collectively has a

name. The name of this function is main, and the set of parentheses that

follows the name indicate that it is a function. The word int stands for

“integer”. It indicates that the function sends an integer value back to the

operating system when it is finished executing.

Although most C++ programs have more than one function, every C++

program must have a function called main. It is the starting point of the

program. If you are ever reading someone else’s C++ program and want

to find where it starts, just look for a function named main.

Line 5 :

{

This is called a left-brace, or an opening brace, and it is associated with the

beginning of the function main. All the statements that make up a function

are enclosed in a set of braces. If you look the third line down from the

opening brace you’ll see the closing brace. Everything between the two

braces is the contents of the function main.

After the opening brace you see the following statement in Line 6:

cout<< “Programming is great fun!”;

This line displays a message on the screen. The message “Programming

is great fun!”is printed without the quotation marks. In programming

terms, the group of characters inside the quotation marks is called a string

literal or string constants.

At the end of the line is a semicolon (;). Just as a period marks the end of

a sentence, a semicolon marks the end of a complete statement in C++.

39

Line 8 reads:

return 0;

This sends the integer value 0 back to the operating system upon the

program’s completion. The value 0 usually indicates that a program

executed successfully.

Line 9 contains the closing brace:

}

This brace marks the end of the main function. Since main is the only

function in this program, it also marks the end of the program.

In the sample program you encountered several sets of special characters.

Table 3-1 provides a short summary of how they were used.

Table 3-1 Special
characters

Character Name Description

// Double Slash Marks the beginning of a comment

Pound Sign Marks the beginning of a preprocessor
directive

<> Opening and
closing brackets

Enclose a filename when used with the
#include directive

() Opening and

closing
parentheses

Used in naming a function, as in int main ()

{ } Opening and

closing braces

Encloses a group of statements, such as the

contents of a function

“ “ Opening and
Closing quotation
marks

Enclose a string of characters, such as a
message that is to be printed on the screen

; semicolon Marks the end of a complete programming
statement

40

int main ()

}

// A crazy mixed up program

return 0;

#include <iostream.h>

cout<< “In 1942 Columbus sailed the ocean blue.”;

{

 Checkpoint

1. The following C++ program will not compile because the lines have

been mixed up.

When the lines are properly arranged the program should display the

following on the screen:

In 1942 Columbus sailed the ocean blue.

Rearrange the lines in the correct order. Test the program by entering it on

the computer, compiling it, and running it.

41

PROGRAMS 3-2

Program Output

Programming is great fun!

// A simple C++

program #include

<iostream.h>

int main()

{

cout<< "Programming is " << "great

fun!"; return 0;

}

PROGRAMS 3-3

Program Output

Programming is great

fun!

The cout Object

In this section you will learn to write programs that produce output on the

screen. The simplest type of screen output that a program can display is

console output, which is merely plain text.

Program 3-2 is one way to write the same program.

Program 3-3 shows another way to accomplish the same thing.

// A simple C++ program

#include <iostream.h>

int main()

{

cout<< "Programming is ";

cout<< "great fun!";

return 0;

}

42

3.2

because

ways to

43

PROGRAMS 3-4

Program Output

The following items were top sellersduring the month of June:Computer

gamesCoffeeAspirin

An important concept to understand about Program 3-3 is that, although

the output is broken up into two programming statements, this program

will display the message on a single line. Unless you specify otherwise, the

information you send to cout is displayed in a continuous stream.

Sometimes this can produce less-than desirable results. Program 3-4 is an

example.

The layout of the actual output looks nothing like the arrangement of the

strings in the source code.

First, notice there is no space displayed between the words “sellers” and

“during”, or between “June:” and “Computer”. cout display messages

exactly as they are sent. If spaces are to be displayed, they must appear

in the strings.

Second, even though the output is broken into five lines in the source code,

it comes out as one long line of output. Because the output is too long to

fit on one line on the screen, it wraps around to a second line when

displayed. The reason the output comes out as one long line is

cout does not start a new line unless told to do so. There are two

// An unruly printing program

#include <iostream.h>

int main()

{

cout<< "The following items were top sellers";

cout<< "during the month of June:";

cout<< "Computer games";

cout<< "Coffee";

cout<< "Aspirin";

return 0;

}

PROGRAMS 3-5

Program Output

The following items were top

sellers during the month of June:

Computer games

Coffee

Aspiri

n

instruct cout a stream manipulator called endl (which is pronounced

“end- line” or “end-L”) Program 3-5 is an example.

Another way to cause cout to go to anew line is to insert an escape

sequence in the string itself. An escape sequence starts with a backslash

character (\), and is followed by one or more control characters. It allows

you to control the way output is displayed by embedding commands within

the string itself. Program 3-6 is an example.

The newline escape sequence is \n. When cout encounters \n in

a string, it doesn’t print it on the screen, but interprets it as a special

command to advance the output cursor to the next line. You have probably

noticed inserting the escape sequence requires less typing than inserting

endl. That’s why many programmers prefer it.

// A well-adjusted printing

program #include <iostream.h>

int main()

{

cout<< "The following items were top sellers"

<<endl; cout<< "during the month of June:" <<endl;

cout<< "Computer games" <<endl;

cout<< "Coffee" <<endl;

cout<< "Aspirin" <<endl;

return 0;

}

44

// Yet another well-adjusted printing program

#include <iostream.h>

int main()

{

cout<< "The following items were top sellers\n";

cout<< "during the month of June:\n";

cout<< "Computer games\nCoffee";

cout<< "\nAspirin\n";

return 0;

}

Program Output

The following items were top sellers

during the month of June:

Computer games

Coffee

Aspirin

There are many escape sequences in C++. They give you the ability to

exercise greater control over the way information is output by your

program. Table 3-2 lists a few of them.

Escape
Sequence

Name Description

\n Newline Causes the cursor to go to the next line for subsequent
printing.

\t Horizontal Tab Causes the cursor to skip over to the next tab stop.

\a Alarm Causes the computer to beep.

\b Backspace Causes the cursor to back up, or move left one position.

\\ Backslash Causes a backslash to be printed.

Table 3-2 List of Escape Sequence

PROGRAMS 3-6

45

cout<< “Success\n”;

cout<< “ Success\n\n”;

int main ()

cout<< “Success”;

}

//It’s a mad, mad program

#include <iostream.h>

cout<<”Success \n”;

{

return 0;

Program Output

Success

Success Success

Success

//The Works of Wolfgang

#include <iostream.h>

int main ()

{

cout<< “The works of Wolfgang\ninclude the following”;

cout<< “\nThe Turkish March” <<endl;

cout<< “and Symphony No. 40”;

cout<< “in G minor.” <<endl;

return 0;

}

 Checkpoint

1. The following C++ program will not compile because the lines have been mixed up.

When the lines are properly arranged, the program should display the following on the

screen:

2. Study the following program and show what it will print on the screen.

46

47

Variables

Variables are an example of an identifier that is declared by the user. This

name must be appropriate, easily understood and gives a clear meaning

towards the value that it represents. This name is used to name the

memory space that will store the variable’s value.

Variables need to be declared before using. To declare the variable, we

need to identify the name and type to represent a value.

When a variable has a certain data type, it means the variable can only

represent data from that type only. For example, for an integer type

variable, C++ assumes only whole numbers can be represented.

3.3.1 Rules to Name a Variable

In C++ language, there is a guideline in choosing a name for a variable

which is:

a. Variable name can only contain letters, digits and underscores ‘_’.

b. Variable names cannot start with a digit (numbers).

c. Reserved words in C++ cannot be used as variable names.

d. Identifies that have a space or symbols (! @ # $ % & *) are not

valid.

e. The size of the variable name cannot exceed 32 characters.

Next, there are some examples of variable names that are valid given in

Table 3-3.

Valid Variable Names Invalid Variable Names

tot3 2number

grand_Total se-cond

_total $price

GrandTotal student name

3.3

grand_total double

GRANDTOTAL 1*2

Table 3-3 Valid and Invalid Variable Names

It is not necessary for only lower case letters to be used to name a variable.

Capital letters could also be used. Nevertheless, C++ is case sensitive,

where lower case letters are different than capital letters. Observe how

each of these variable name below are different in C.

total Total toTAL TOtal toTAl

The best way to name the variable is with a name that best represents the

value that is store in it. Therefore, sometimes the variables name can be

made of two words, like student_name or student name. These names

cannot be separated by a space as it would be against the first rule of

naming variables.

 Checkpoint

1. For each of the variable names below, state why it is not valid.

a. float

b. percentage%

c. printf

d. one&two

e. integer

f. student age

g. value 10.5

h. 1value

i. answer 1

j. X-2

48

data_type variable_name;

data_type variable_name = initial value;

C++ reserved Words

Reserved words are words that have a specific meaning in C++ and cannot

be used for other reasons. All reserved words come in lower case letters.

auto double int struct

break else long switch

case enum register typedef

char extern return union

const float short unsigned

continue for signed void

default goto sizeof volatile

do if static while

Table 3-4 Reserved Words in C++

Variable Declaration

Variables can be used to keep input data and the calculation results or logic

manipulations. Values that are kept by variables can change throughout

program execution.

Syntax:

Or

49

3.4

3.5

PROGRAMS 3-7

Next are some examples of variable declarations given in Table 3-5:

Data Type Variable Name Values Stored

int marks1, marks2,

marks3;

98, 23, 77

double averageMarks; 66.6

char grade; A

unsigned short integer age; 36

Table 3-5Variable Declaration Examples

When declaring variables, the compiler will be notified of four items:

1. Variable name

2. Variable type

3. Size of cell of variable in the memory

4. Variable storage class

Different variables are used to keep different types of data. Therefore, in

the variable declaration, it has to be mentioned what data type the

variable will contain.

Literals

A variable is called a “variable” because its value may be changed. A

literal, on the other hand, is a value that does not change during the

program’s execution. Program 3-7contains both literals and a variable.

50

// This program has literals and a variable.

#include <iostream.h>

int main()

{

int apples;

apples = 20;

cout<< "Today we sold " << apples << " bushels of apples.\n";

return 0;

}

3.6

Of course, the variable is apples. It is defined as an integer. Table 3-6

lists the literals found in the program

Literal Type of Literal
20 Integer Literal
"Today we sold " String Literal
" bushels of apples.\n" String Literal

0 Integer Literal

Table 3-6 Literals and Type of Literals

Program Output

Today we sold 20 bushels of apples

51

//This program uses variables and literals

#include <iostream.h>

int main ()

{

int little;

int big;

little = 2;

big = 2000;

cout<< “The little number is” << little <<endl;

cout<< “The big number is” << big <<endl;

return 0;

}

#include <iostream.h>

int main ()

{

intnumber;

number = 712;

cout<< “The value is “ << “number” <<endl;

return 0;

}

 Checkpoint

1. Examine the following program.

List all the variables and literals that appear in the program.

2. What will the following program display on the screen?

52

// This program has variables of several of the integer types.

#include <iostream.h>

int main()

{

int checking;

unsignedint miles;

long days;

checking = -20;

miles = 4276;

days = 189000;

cout<< "We have made a long journey of " << miles;

cout<< " miles.\n";

cout<< "Our checking account balance is " << checking;

cout<< "\nAbout " << days << " days ago Columbus ";

cout<< "stood on this spot.\n";

return 0;

}

PROGRAMS 3-8

Integer Data types

There are many different types of data. Variables are classified according

to their data type, which determines the kind of information that may be

stored in them. Integer variables can only hold whole numbers.

Program Output

We have made a long journey of 4276 miles.

Our checking account balance is -20

About 18900 days ago Columbus stood on this spot.

53

3.7

// This program uses character literals.

#include <iostream>

int main()

{

char letter;

letter = 'A';

cout<< letter <<endl;

letter = 'B';

cout<< letter <<endl;

return 0;

}

Program Output

A

B

The char Data Types

char data type gets its name from the word “character”. As its name suggests,

it is primarily for storing characters.

Floating-Point Data Types

Floating-point data types are used to define variables that can hold real

numbers.

54

3.8

PROGRAMS 3-9

3.9

Variable Assignments

We can assign values to a variable by using the following statement:

variable = value;

Consider the next example:

/*1*/ int number1, number2, multipliedNumber;

/*2*/ number1 = 10;
/*3*/ number2 = 25;

/*4*/ multipliedNumber = number1 * number2;

When statement /*1*/is declared, the memory cell assigned to each

variable is:

? ? ?

number1 number2 multipliedNumber

Statement /*2*/assigns 10 to variable number1 and statement /

3/assigns 25 to variable number2.

10 25 ?

number1 number2 multipliedNumber

Nextstatement /*4*/ is executed. When assignement statement

multipliedNumber = number1 * number2; is executed, the right side of ‘=’

will be calculated first, that is by doing multiplication on values kept by

variables number1 and number2. The result is 250 and this value will be

assignment to the variable multipliedNumber that is on the left of “=”. Next

is the result of the execution of statement /*4*/.

10 25 250

number1 number2 multipliedNumber

55

3.10

 Checkpoint

1. Explain why the declaration is not valid:

 Declaration Explanation

i.

int;

ii.

float a;

iii.

x, y, z;

2. Correct the declaration below:

 Declaration Correction

i.

int x = ‘A’;

ii.

float y = 1;

3. Write the declaration for these values:

i. Student marks : 78

ii. Weight of boxes of books : 4.5kg

iii. Temperature at a country in the west during winter: -4oC.

iv. Student grade is A.

56

Interactivity

So far you have written programs with built-in data. Without giving the user

an opportunity to enter his or her own data, you have initialized the

variables with the necessary starting values. These types of programs are

limited to performing their task with only a single set of starting data. If

you decide to change the initial value of any variable, the program must be

modified and recompiled.

In reality, most programs ask for values that will be assigned to variables.

This means the program does not have to be modified if the user wants to

run it several times with different sets of data. For example, a program that

calculates payroll for a small business might ask the user to enter the name

of the employee, the hours worked, and the hourly pay rate. When the

paycheck for that employee has been printed, the program could start over

again and ask for the name, hours worked, and hourly pay rate of the next

employee.

57

3.11

PROGRAMS 3-10

Program Output

This program calculates the area of a rectangle.

What is the length of the rectangle? 10 [Enter]

What is the width of the rectangle? 20 [Enter]

The area of the rectangle is 200.

3.11.1 The cin object

Just as cout is C++’s standard output object, cin is the standard input

object. It reads input from the console (or keyboard) as shown in

Program 3-10.

// This program asks the user to enter the length and width of

// a rectangle. It calculates the rectangle's area and displays

// the value on the screen.

#include <iostream.h>

int main()

{

int length, width, area;

cout<< "This program calculates the area of a ";

cout<< "rectangle.\n";

cout<< "What is the length of the rectangle? ";

cin>> length;

cout<< "What is the width of the rectangle? ";

cin>> width;

area = length * width;

cout<< "The area of the rectangle is " << area << ".\n";

return 0;

}

58

59

cout<< "What is the length of the rectangle? ";

cin>> length;

Gathering input from the user is normally a two-step process:

1. Use the cout object to display a prompt on the screen.

2. Use the cin object to read a value from the keyboard.

Instead of calculating the area of one rectangle, this program can be used

to get the area of any rectangle. The values that are stored in the length

and width variables are entered by the user when the program is running.

Look at this line:

In that line, the cout object is used to display the question "What is the

length of the rectangle? "; This question is known as a prompt, and it

tells the user what data he or she should enter. Your program should always

display a prompt before it uses cin to read input. This way, the user will

know that he or she must type a value at the keyboard.

The line uses cin object to read a value from keyboard. The >>symbol is

the stream extraction operator. It gets characters from the stream

object on its left and stores them in the variable whose name appears on

its right. In this line, characters are taken from the cin object (which gets

from the keyboard) and are stored in the length variable.

The prompt should ask the user a question, or tell the user to enter a

specific value. For example, the code we just examined from Program 3-10

displays the following prompt:

NOTE : You must include the iostream file in any program that uses cin.

NOTE :The [enter] key is pressed after the last number is entered.

cout<< "What is the length of the rectangle? ";

When the user sees the prompt, he or she knows to enter the rectangle’s

length. After the prompt is displayed, the program uses the cin object to

read a value from the keyboard and store the value in the length variable.

3.11.2 Entering Multiple Values

The cin object may be used to gather multiple values at once. Look at

Program 3-11 which is a modified version of program 3-10. Line cin>>

length >> width; waits for the user to enter two values. The first is

assigned to length and the second to width.

In the example output, the user entered 10 and 20, so 10 is stored in

length and 20 is stored in width.

Notice, the user separate the numbers by spaces as they entered. This is

how cin knows where each number begins and ends. It doesn’t matter how

many spaces are entered between the individual numbers. For example,

the user could have entered

10 20

cin will also read multiple values of different data types.

60

 Checkpoint

1. A program has the following variable definitions.

long miles;

int feet;

float inches;

Write one cin statement that reads a value into each of these variables.

2. The following program will run, but the user will have difficulty understanding what to do.

How would you improve the program?

// This program asks the user to enter the length and width of

// a rectangle. It calculates the rectangle's area and displays

// the value on the screen.

#include <iostream.h>

int main()

{

int length, width, area;

cout<< "This program calculates the area of a ";

cout<< "rectangle.\n";

cout<< "Enter the length and width of the rectangle ";

cout<< "separated by a space.\n";

cin>> length >> width;

area = length * width;

cout<< "The area of the rectangle is " << area <<endl;

return 0;

}

PROGRAMS 3-11

61

//This program multiplies two numbers and displays the result

#include <iostream.h>

int main ()

{

double first, second, product;

cin>> first >> second;

product = first * second;

cout<< product;

return 0;

}

//To change weight from pound to kilogram

#include <iostream.h>

int main ()

{

double pounds, kilograms;

// Write code here that prompts the user to enter his or her weight and reads

the input into the pounds variable

// The following line does the conversion.

kilograms = pounds / 2.2;

// Write code here that displays the user’s weight in kilograms.

return 0;

3. Complete the following program skeleton so it asks for the user’s weight (in pounds) and

displays the equivalent weight in kilograms.

4. Write C++ statement(s) that accomplish the following:

i. Declare int variables x, y, and sum.

ii. Prompt the user to input two integer numbers, and save the number in variable

named x and y.

iii. Adds the two integer numbers, x and y, and save it in a variable named sum.

iv. Print the sum of the numbers

5. Based on scenario below (i-v), write the C++ statement for the following program.

i. Read an integer value and store it to a variable named Lebar.

ii. Print an output : Your Salary for this month is : RM2567.00. The salary value is

stored in the SALARY variable.

62

ACTIVITY

Examine the following program

//This program uses variables and literals

#include <iostream.h>

int main ()

{

int little;

int big;

little = 2;

big = 2000;

cout<< “The little number is” << little <<endl;

cout<< “The big number is” << big <<endl;

return 0;

}

List all the variables and literals that appear in the program.

Instructions: Find the true and false statement below. Then,
rewrite the remaining false statements so they are true.

1. The line starts with a # called preprocessor directive.

2. The iostream file contains code that allows a C++ program to

display output on the screen and read input from the

keyboard.

3. \t is a newline to go to the next line for subsequent printing.

4. goto is a reserved word.

Quiz Yourself Online: Do Self Test in the E-Learning

63

KEY TERM

SUMMARY.

• C++ language is a high level language.

• Learned writing simple C++ program, how to compile and execute those

programs.

Preprocessor directive literals

Function Variable assignments

String literal Interactivity

Variables

Reserved words

REFERENCEES

Tony Gaddis, Starting Out with C++ - Early Objects (10th edition) ,Pearson,
2020.

64

Operators

Symbols like +, -, *, /, <, >, != are known as operators. In C++ language

there are many types of operators. There are arithmetic operators,

relational operators, logic operators, increment and decrement operators

and pointers. This chapter will explain in detail about these operators.

Data stored in memory can be modified using operators. The operators are

divided into three distinct types, refer to Table 4.1.

Operators Symbol

Arithmetic +, -, *, /, %

Relational <, <=, >, >=, ==, !=

Logic &&, ||, !

Table 4.1 Operators and Symbol

Operators are use to connect operands into expressions. These

expressions, when ended with a semicolon (;) becomes a statement.

Expression: basic_pay + allowances – expenses

Statement: net_pay = basic_pay + allowances – expenses;

TOPIC

4

Mathematical Expressions, Relational

Operators and Logical Operators.

LEARNING OUTCOMES

By the end of topic, you should be able to:

1. Write the arithmetic expressions using C++ syntax
2. Use the operators for arithmetic, Relational and Logic.

3. Evaluate the expressions to be used in assignment

statement.

65

4.1

Arithmetic Operators

Arithmetic operators are fixed to one variable only. A list of unary

operators are given in Table 8.2.

Operator Function

+ Positive Operator

- Negative Operator

++ Increment Operator

-- Decrement Operator

! Not Operator

& Address Operator

* Value of Address Operator

Table 4.2 Unary Operators Symbols

Increment/Decrement Operator

If the increment/decrement operator is fixed at the end (postfix) of a

variable, the original value of the variable is used, and then only is the

value updated (incremented or decremented).

If the increment/decrement operator is fixed at the beginning (prefix) of a

variable, the original value of the valuable will be updated, (incremented or

decremented) and the updated value will be used.

66

4.2

// Use prefix ++ to increment num.

++num;

cout<< "Now the variable num is " <<num<<endl;

cout<< "I will now decrement num.\n\n";

// Use postfix -- to decrement num.

num--;

cout<< "Now the variable num is " <<num<<endl;

cout<< "I will decrement num again.\n\n";

// Use prefix -- to increment num.

--num;

cout<< "Now the variable num is " <<num<<endl;

return 0;

}

// This program demonstrates the ++ and -- operators.

#include <iostream.h>

int main()

{

intnum = 4; // num starts out with 4.

// Display the value in num.

cout<< "The variable num is " <<num<<endl;

cout<< "I will now increment num.\n\n";

// Use postfix ++ to increment num.

num++;

cout<< "Now the variable num is " <<num<<endl;

cout<< "I will increment num again.\n\n";

PROGRAMS 4-1

67

NOTE :The expression num++ is pronounced “num plus plus”, and num—is pronounced

“num minus minus”.

Program Output

The variable num is 4

I will now increment num.

Now the variable num is 5

I will increment num again.

Now the variable num is 6

I will increment num again.

Now the variable num is 5

I will increment num again.

The variable num is 4

68

// This program demonstrates the prefix and postfix
// modes of the increment and decrement operators.
#include <iostream.h>

int main()
{

int num = 4;

cout << num << endl; // Displays 4
cout << num++ << endl; // Displays 4, then adds 1 to num
cout << num << endl; // Displays 5
cout << ++num << endl; // Adds 1 to num, then displays 6
cout << endl; // Displays a blank line

cout << num << endl; // Displays 6
cout << num-- << endl; // Displays 6, then subtracts 1 from num
cout << num << endl; // Displays 5
cout << --num << endl; // Subtracts 1 from num, then displays 4

return 0;

}

 Checkpoint

1. What is the output of the following program?

Program Output

69

PROGRAMS 4-2

Binary Arithmetic Operators

Operands that are fixed with arithmetic operators must be of numeric

types. Therefore, the operands must be of type int, float, double, or even

char. Operators is put in between two operands. The modulus operator can

only be used with the int type data only.

Operator Function

+ Positive Operator
- Negative Operator

++ Increment Operator

-- Decrement Operator

! Not Operator

& Address Operator

* Value of Address Operator

Table 4.3 Binary Operators Symbols

70

#include <iostream.h>

int main()

{

intx, y, z;

x = 10, y = 13;

z = x + y;

cout<< z <<endl;

y = y – x;

cout<<y<<endl;

x = y * z;

cout<<x<<endl;

z = x / 20;

cout<< z <<endl;

y = z % x;

cout<<y<<endl;

return 0;

}

4.3

71

Integer Division

Integer division happens when both the operands are of integer type.

Operands can be a constant or a variable. If the division is not a round

number (that is it has a decimal value), therefore the remainder of the

division is ignored. The result is truncated to an integer value.

Real Division

Real division is done when one or both of the operands have a floating

point value. Division operation done is the same as normal arithmetic

division. The result of the division is a floating point value.

Value a Value b Integer Division Real Division

10 3 10 / 3 = 3 10.0 / 3.0 = 3.333333

5 10 5 / 10 = 0 5.0 / 10.0 = 0.500000

6 6 6 / 6 = 1 6.0 / 6.0 = 1.000000

Table 4.4 Division Calculations

Operation Division
Result

Remainder

5 % 3 1 2

7 % 2 3 1

12 % 2 6 0

Table 4.5 Modulos Operations

If all of the operands are int, the result is int, but if any one of the operands

is float, it will result in a float value.

Program Output

23

3

69

3

3

Arithmetic Expressions

Arithmetic expressions can be written by combining one or more arithmetic

operations. The precedence levels of C++ arithmetic expressions would

determine the arithmetic operations sequence in solving the expressions.

If you do not want the arithmetic operations evaluated using the

precedence levels, use the brackets as the expressions in the brackets will

be evaluated first. Table 4-5 shows the precedence levels.

Precedence
Level

Operation

High (), *, /, %

Low + , -

Table 4-6 Precedence Levels.

How precedence levels work?

1 + 2 * 3

1 + 6 = 7

Therefore : 1 + 2 * 3 is 7

72

4.4

 Checkpoint

1. Complete the table below by writing the value of each expression in the “Value” column.

Expression Value

6+3*5

12/2-4

9+14*2-6

5+19%3-1

(6+2)*3

14/(11 – 4)

9+12*(8 – 3)

(6+17)%2-1

(9 – 3) * (6 + 9) / 3

73

Assignment Statement

Assignment of data to the variable can be written as:

variable = expression;

For the statement above, the left part can only be a variable. On the right,

it can be made up of a combination of variables and constants.

Combined Assignment Operators

Quite often, programs have assignment statements of the following form:

number = number + 1 ;

The expression on the right side of the assignment operator gives the value

of number plus 1. The result is then assigned to number, replacing the

value that was previously stored there. Effectively, this statement adds 1

to number. In a similar fashion, the following statement subtracts 5 from

number.

number = number – 5;

Table 4-7 shows other examples of statements written this way.

Assume x = 6

Statement What It Does Value of x after the
statement

x = x + 4;

Adds 4 to x

10

x = x - 3;

Subtracts 3 from x

3

x = x * 10;

Multiplies x by 10

60

x = x / 4;

Divides x by 2

3

x = x % 4;

Makes x the remainder of x/4

2

These types of operations are very common in programming. For

convenience, C++ offers a special set of operators designed specifically for

74

4.5

these jobs. Table 4-8 shows the combined assignment operators, also

known as compound operators, and arithmetic assignment

operators.

Operator Example Usage Equivalent to

+=

x += 5;

x = x + 5;

-=

y -= 2

y = y - 2;

*=

z *= 10;

z = z * 2;

/=

a /= b;

a = a / b;

%=

c %= 3;

c = c % 3;

75

// This program tracks the inventory of three widget stores

// that opened at the same time. Each store started with the

// same number of widgets in inventory. By subtracting the

// number of widgets each store has sold from its inventory,

// the current inventory can be calculated.

#include <iostream.h>

int main()

{

intbegInv, // Begining inventory for all stores

sold, // Number of widgets sold

store1, // Store 1's inventory

store2, // Store 2's inventory

store3; // Store 3's inventory

// Get the beginning inventory for all the stores.

cout<< "One week ago, 3 new widget stores opened\n";

cout<< "at the same time with the same beginning\n";

cout<< "inventory. What was the beginning inventory? ";

cin>>begInv;

// Set each store's inventory.

store1 = store2 = store3 = begInv;

// Get the number of widgets sold at store 1.

cout<< "How many widgets has store 1 sold? ";

cin>> sold;

store1 -= sold; // Adjust store 1's inventory.

// Get the number of widgets sold at store 2.

cout<< "How many widgets has store 2 sold? ";

cin>> sold;

store2 -= sold; // Adjust store 2's inventory.

// Get the number of widgets sold at store 3.

cout<< "How many widgets has store 3 sold? ";

cin>> sold;

store3 -= sold; // Adjust store 3's inventory.

PROGRAMS 4-3

76

// Display each store's current inventory.

cout<< "\nThe current inventory of each store:\n";

cout<< "Store 1: " << store1 <<endl;

cout<< "Store 2: " << store2 <<endl;

cout<< "Store 3: " << store3 <<endl;

return 0;

}

 Checkpoint

1. Write a multiple assignment statement that assigns 0 to the variables total, subtotal, tax,

and shipping.

2. Write statements using combined assignment operators to perform the following:

a. Add 6 to x.

b. Subtract 4 from amount.

c. Multiply y by 4.

d. Divide total by 27.

e. Store in x the remainder of x divided by 7.

f. Add y * 5 to x.

g. Subtract discount times 4 from total.

h. Multiply increase by salesRep times 5.

i. Divide profit by shares minus 1000.

Program Output with Example Input Shown in Bold

One week ago, 3 new widget stores opened

at the same time with the same beginning

inventory, What was the beginning inventory? 100 [Enter]

How many widget has store 1 sold? 25 [Enter]

How many widget has store 2 sold? 15 [Enter]

How many widget has store 3 sold? 45 [Enter]

The current inventory of each store:

Store 1: 75

Store 2: 85

Store 3: 55

77

#include <iostream.h>

int main ()

{

intunus, duo, tres;

unus = duo = tres = 5;

unus += 4;

duo *= 2;

tres -= 4;

unus /= 3;

duo += tres;

cout<<unus<<endl;

cout<< duo <<endl;

cout<<tres<<endl;

return 0;

}

3. What will the following program display?

4. Complete the table below by writing the value of each expression in the “Value” column.

Expression Value

i. (9 – 3) * (6 + 9)

ii. 5 + 19 % 3 - 1

iii. (6 + 17) % 2 - 1

5. Determine the value of the following expressions:

Expression Value

i. 3 * 4 / 6 + 6

ii. 10 - (1 + 7 * 3)

iii. 3.0 + 4.0 * 6.0

iv. 50 % 10

78

Write a multiple assignment statement that assigns 0 to the

variables total, subtotal, tax, and shipping.

Instructions: Find the true and false statement below. Then,

rewrite the remaining false statements so they are true.

1. An operator is a symbol used for performing operations on

operands.

2. a = x + y; In the above statement, x and y are operands while

+ is an addition operator.

3. % modulus operator means returns remainder after division.

4. ++increment operator means decrease an integer value by 1.

Quiz Yourself Online: Do Self Test in the E-Learning

79

KEY TERM

SUMMARY.

• Special arithmetic operators are normally used to write programs.

• C++ arithmetic expressions are a combination of one or more arithmetic

operations

• Other than arithmetic operators, C++ also provide operators that are use to

compare data that is known as relational operators.

Operators Assignment statements

Integer Division Arithmetic

Real division Relational

Variables Logic

Precedence level

REFERENCEES

Tony Gaddis, Starting Out with C++ - Early Objects (10th edition) ,Pearson,

2020.

80

Relational Operators

Relational operators allow you to compare numeric and char values and

determine whether one is greater than, less than, equal to, or not equal to

another. Numeric data is compared in C++ by using relational operators.

Each relational operator determines whether a specific relationship exists

between two values. For example, the greater-than operator (>)

determines if a value is greater than another. The equality operator (==)

determines if two values are equal. Table 5-1 lists all of C++’s relational

operators.

Relational Operators Meaning

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

== Equal to

!= Not equal to

Table 5-1 Relational Operators

TOPIC

5

Making Decisions

LEARNING OUTCOMES

By the end of topic, you should be able to:

1. Write C++ symtax for if selection, if/else selection adn

nested if selection structures.

2. Differentiate between if and switch statements

3. Compare between the if and switch statements based on

the probelm given.

81

5.1

 Checkpoint

1. Assuming x is 5, y is 6, and z is 8, indicate by circling the T or F whether each of the following

relational expressions is true or false:

a. x == 5 T F

b. 7 <= (x+2) T F

c. z < 4 T F

d. (2 + x) != y T F

e. z != 4 T F

f. x >= 9 T F

g. x <= (y * 2) T F

Logic Operator

The logic operator is used to combine a few expressions that have relational

operators. It is useful to do complex comparisons to make decisions.

Operator Function Explanation

&& And Is true if and only if both expressions are true

| | Or Is true if one or both the expressions are true

! Not Is true if the expression is false and vice versa

Table 5-2 Logical Operators

5.2.1 The && Operator

The && operator is known as the logical AND operator. It takes two

expressions as operands and creates an expression that is true only

82

5.2

when both sub-expressions are true. Here is an example of an if

statement that uses the && operator:

if (temperature < 20 && minutes > 12)

cout << “The temperature is in the danger zone.”;

In the statement above the two relational expressions are combined

into a single expression. The cout statement will only be executed if

temperature is less than 20 AND minutes are greater than 12. If

either relational test is false, the entire expression is false and the

cout statement is not executed.

Expression Value of Expression

true && true false (0)

false && true false (0)

false && false false (0)

true && true true (1)

Table 5-3 Truth table for the && operator

5.2.2 The | | Operator

The || operator is known as the logical OR operator. It takes two

expressions as operands and creates an expression that is true when

either of the sub-expressions is true. Here is an example of an if

statement that uses the || operator:

if (temperature < 20 || temperature > 100)

cout << “The temperature is in the danger zone.”;

The cout statement will be executed if temperature is less than 20

OR temperature is greater than 100. If either relational test is true,

the entire expression is true and the cout statement is executed.

Expression Value of Expression

true || true true (1)

false || true true (1)

false || false false (0)

true || true true (1)

Table 5-4 Truth table for the || operator

83

5.2.3 The ! Operator

The ! operator performs a logical NOT operation. It takes an operand

and reverses its truth or falsehood. In other words, if the expression

is false, it returns true. Here is an if statement using ! operator:

if (!(temperature > 100))

cout << “You are below the maximum temperature.\n”;

First, the expression (temperature > 100) is tested to be true or

false. Then the ! operator is applied to that value. If the expression

(temperature > 100) is true, the ! operator returns false. If it is

false, the ! operator returns true. In the example, it is equivalent to

asking “is the temperature not greater than 100?”

Expression Value of Expression

! true false (0)

! false true (1)

Table 5-4 Truth table for the ! operator

84

 Checkpoint

1. The following truth table shows various combinations of the value true and false connected

by a logical operator. Complete the table by indicating if the result of such a combination is

TRUE or FALSE.

Logical Expression Result (true or false)

true && false

true && true

false && true

false && false

true || false

true || true

false || true

false || false

! true

! false

2. Assume the variables a =2, b=4, and c=6. Indicate by circling the T or F if each of the

following conditions is true or false:

a == 4 || b > 2 T F

6 <= c && a > 3 T F

1 != b && c != 3 T F

a >= -1 || a <= b T F

! (a > 2) T F

85

Selection

Control

Structure

switch .. break if

if if/else Nested if

Introduction to Selection Control
Structure

In topic 3, you have learnt to solve problems using the sequence, selection

and repetition control structures. C++ language has a few selection

structures that control the flow which is if, switch and break.

If statement

The if statement is used to represent the selection structure. The selection

structure allows us to choose and execute only one of the many choices available

based on a certain condition. Selection structure is divided into 3 main types,

which are if selection, if/else selection and nested if selection.

5.4.1 If statement

Syntax for the if selection structure is written as:

if (expression)

statement;

86

5.3

5.4

Program 5-1

The if statement above will only be executed when the value of the

expression is true. If the statement is false, the statement will not be

executed. Expression can only be made up of relational or logical

expressions that would have the value of true or false.

Enter 3 test scores and I will average them: 100 100 100 [Enter]

Your average is 100.0

Congratulations! That’s a high score!

Program Output with Example Input Shown in Bold

Enter 3 test scores and I will average them: 80 90 70 [Enter]

Your average is 80.0

Program Output with Example Input Shown in Bold

// This program averages three test scores

#include <iostream.h>

#include <iomanip.h>

int main()

{

int score1, score2, score3; // To hold three test scores

double average; // TO hold the average score

// Get the three test scores.

cout << "Enter 3 test scores and I will average them: ";

cin >> score1 >> score2 >> score3;

// Calculate and display the average score.

average = (score1 + score2 + score3) / 3.0;

cout << fixed << showpoint << setprecision(1);

cout << "Your average is " << average << endl;

// If the average is greater than 95, congratulate the user.

if (average > 95)

cout << "Congratulations! That's a high score!\n";

return 0;

}

87

8

if (expression)

{

statement;

statement;

// Place as many statements here as necessary.

}

Expanding the if Statement

The if statement can conditionally execute a block of statements enclosed

in braces.

What if you want an if statement to conditionally execute a group of

statements, not just one line?

// This program averages 3 test scores.

// It demonstrates an if statement executing a block of statements.

#include <iostream.h>

#include <iomanip.h>

int main()

{

int score1, score2, score3; // To hold three test scores

double average; // TO hold the average score

// Get the three test scores.

cout << "Enter 3 test scores and I will average them: ";

cin >> score1 >> score2 >> score3;

// Calculate and display the average score.

average = (score1 + score2 + score3) / 3.0;

cout << fixed << showpoint << setprecision(1);

cout << "Your average is " << average << endl;

// If the average is greater than 95, congratulate the user.

if (average > 95)

{

cout << "Congratulations!\n";

cout << "That's a high score.\n";

cout << "You deserve a pat on the back!\n";

}

return 0;

}

Program Output with Example Input Shown in Bold

Enter 3 test scores and I will average them: 100 100 100 [Enter]

Your average is 100.0

Congratulations!

That’s a high score.

You deserve a pat on the back!

Program Output with Example Input Shown in Bold

Enter 3 test scores and I will average them: 80 90 70 [Enter]

Your average is 80.0

Program 5-2

88

5.4.3 Nested if Statement

Program 5-3

5.4.2 The if/else Statement

The if/else statement will execute one group of statements if the expression

is true, or another group of statements if the expression is false. The if/else

statement is an expansion of the if statement. Here is its format:

if (expression)

statement or block;

else

statement or block;

As with the if statement, an expression is evaluated. If the expression is

true, a statement or block is executed. If the expression is false, however,

a separate group of statements is executed. Program 5-3 uses the if/else

statement along with the modulus operator to determine if a number is odd

or even.

// This program uses the modulus operator to determine

// if a number is odd or even. If the number is evenly divisible

// by 2, it is an even number. A remainder indicates it is odd.

#include <iostream.h>

int main()

{

int number;

cout << "Enter an integer and I will tell you if it\n";

cout << "is odd or even. ";

cin >> number;

if (number % 2 == 0)

cout << number << " is even.\n";

else

cout << number << " is odd.\n";

return 0;

}

89

Program Output with Example Input Shown in Bold

Enter an integer and I will tell you if it

is odd or even. 17 [Enter]

17 is odd.

Program 5-4

To test more than one condition, an if statement can be nested inside

another if statement.

// This program demonstrates the nested if statement.

#include <iostream.h>

int main()

{

char employed, // Currently employed, Y or N

recentGrad; // Recent graduate, Y or N

// Is the user employed and a recent graduate?

cout << "Answer the following questions\n";

cout << "with either Y for Yes or ";

cout << "N for No.\n";

cout << "Are you employed? ";

cin >> employed;

cout << "Have you graduated from college ";

cout << "in the past two years? ";

cin >> recentGrad;

// Determine the user's loan qualifications.

if (employed == 'Y')

{

if (recentGrad == 'Y') //Nested if

{

cout << "You qualify for the special ";

cout << "interest rate.\n";

}

}

return 0;

}

90

Program Output with Different Example Input Shown in Bold

Answer the following questions

with either Y for Yes or N for No.

Are you employed? Y [Enter]

Have you graduated from college in the past two years? N [Enter]

Program Output with Example Input Shown in Bold

Answer the following questions

with either Y for Yes or N for No.

Are you employed? Y [Enter]

Have you graduated from college in the past two years? Y [Enter]

You qualify for the special interest rate.

// This program demonstrates the nested if statement.

#include <iostream.h>

int main()

{

char employed, // Currently employed, Y or N

recentGrad; // Recent graduate, Y or N

// Is the user employed and a recent graduate?

cout << "Answer the following questions\n";

cout << "with either Y for Yes or ";

cout << "N for No.\n";

cout << "Are you employed? ";

cin >> employed;

cout << "Have you graduated from college ";

cout << "in the past two years? ";

cin >> recentGrad;

// Determine the user's loan qualifications.

if (employed == 'Y')

{

if (recentGrad == 'Y') // Nested if

{

cout << "You qualify for the special ";

cout << "interest rate.\n";

}

else // Not a recent grad, but employed

{

cout << "You must have graduated from ";

cout << "college in the past two\n";

cout << "years to qualify.\n";

}

}

Program 5-5

91

else // Not employed

{

cout << "You must be employed to qualify.\n";

}

return 0;

}

Program Output with Example Input Shown in Bold

Answer the following questions

with either Y for Yes or N for No.

Are you employed? N [Enter]

Have you graduated from college in the past two years? Y [Enter]

You must be employed to qualify.

Program Output with Different Example Input Shown in Bold

Answer the following questions

with either Y for Yes or N for No.

Are you employed? Y [Enter]

Have you graduated from college in the past two years? N [Enter]

You must have graduated from college in the past two years to qualify.

Program Output with Different Example Input Shown in Bold

Answer the following questions

with either Y for Yes or N for No.

Are you employed? Y [Enter]

Have you graduated from college in the past two years? Y [Enter]

You qualify for the special interest rate.

92

The if/else if Statement

The if/else if statement tests a series of conditions. It is often simpler to

test a series of conditions with the if/else if statement than with a set of

nested if/else statements.

if (expression_1)

{

statement;

statement;

etc.

}

else if (expression_2)

{

statement;

statement;

etc.

}

Insert as many else if clauses as necessary

else

{

statement;

statement;

etc.

}

93

5.5

These statements are executed if

none of the expressions above are

true

Otherwise, if expression_2 is

true these statements are

executed, and the rest of the

structure is ignored.

If expression_1 is true these

statements are executed, and the

rest of the structure is ignored.

// This program uses an if/else if statement to assign a

// letter grade (A, B, C, D, or F) to a numeric test score.

#include <iostream.h>

int main()

{

int testScore; // To hold a numeric test score

char grade; // To hold a letter grade

// Get the numeric test score.

cout << "Enter your numeric test score and I will\n";

cout << "tell you the letter grade you earned: ";

cin >> testScore;

// Determine the letter grade.

if (testScore < 60)

cout << "Your grade is F.\n";

else if (testScore < 70)

cout << "Your grade is D.\n";

else if (testScore < 80)

cout << "Your grade is C.\n";

else if (testScore < 90)

cout << "Your grade is B.\n";

else

cout << "Your grade is A.\n";

return 0;

}

Program Output with Example Input Shown in Bold

Enter your numeric test score and I will

tell you the letter grade you earned: 78 [Enter]

Your grade is C.

Program Output with Different Example Input Shown in Bold

Enter your numeric test score and I will

tell you the letter grade you earned: 84 [Enter]

Your grade is B.

Program 5-6

94

Program 5-7

Menus

You can use nested if/else statements or the if/else if statement to create

menu-driven programs. A menu-driven program allows the user to

determine the course of action by selecting it from a list of actions.

95

// This program displays a menu and asks the user to make a

// selection. An if/else if statement determines which item

// the user has chosen.

#include <iostream.h>

#include <iomanip.h>

int main()

{

int choice; // Menu choice

int months; // Number of months

double charges; // Monthly charges

// Constants for membership rates

const double ADULT = 40.0;

const double SENIOR = 30.0;

const double CHILD = 20.0;

// Display the menu and get a choice.

cout << "\t\tHealth Club Membership Menu\n\n";

cout << "1. Standard Adult Membership\n";

cout << "2. Child Membership\n";

cout << "3. Senior Citizen Membership\n";

cout << "4. Quit the Program\n\n";

cout << "Enter your choice: ";

cin >> choice;

// Set the numeric ouput formatting.

cout << fixed << showpoint << setprecision(2);

// Respond to the user's menu selection.

if (choice == 1)

{

cout << "For how many months? ";

cin >> months;

charges = months * ADULT;

cout << "The total charges are $" << charges << endl;

}

5.6

Program Output with Example Input Shown in Bold

Health Club Membership Menu

1. Standard Adult Membership

2. Child Membership

3. Senior Citizen Membership

4. Quit the Program

Enter your choice: 3 [Enter]

For how many months? 6[Enter]

The total charges are $180.00

else if (choice == 2)

{

cout << "For how many months? ";

cin >> months;

charges = months * CHILD;

cout << "The total charges are $" << charges << endl;

}

else if (choice == 3)

{

cout << "For how many months? ";

cin >> months;

charges = months * SENIOR;

cout << "The total charges are $" << charges << endl;

}

else if (choice == 4)

{

cout << "Program ending.\n";

}

else

{

cout << "The valid choices are 1 through 4. Run the\n";

cout << "program again and select one of those.\n";

}

return 0;

}

96

#include <iostream.h>

int main ()

{

int funny = 7, serious = 15;

funny = serious % 2;

if (funny != 1)

{

funny = 0;

serious = 0;

}

else if (funny == 2)

{

funny = 10;

serious = 10;

}

else

{

funny = 1;

serious = 1;

}

cout << funny << “ “ << serious << endl;

return 0;

}

pendapatan_net = 3000;

if (pendapatan_net> 10000.00)

city_tax = 0.1 * pendapatan_net;

else

city_tax = 0.0;

cout<< “city tax = RM “ <<city_tax;

 Checkpoint

1. What is the output of the following program?

2. What is the output of the following program fragment:

97

#include <iostream.h>

int main ()

{

int numBooks, numCoupons;

cout << “How many books are being purchased? “;

cin >> numBooks;

if (numBooks < 1)

numCoupons = 0;

else if (numBooks < 3)

numCoupons = 1;

else if (numBooks < 5)

numCoupons = 2;

else

numCoupons = 3;

cout << “The number of coupons to give is “ << numCoupons << endl;

return 0;

}

3. The following program is used in a bookstore to determine how many discount coupons a

customer gets. Complete the table that appears after the program.

If the customer purchases

this many books

This many coupons are

given

1

2

3

4

5

10

98

4. Write a complete C++ program that calculates the user’s body mass index (BMI) and

categorizes it as underweight, normal, overweight, or obese, based on the following table

from the United State Centers for Disease Control:

BMI Weight Status

Below 18.5 Underweight

18.5 – 24.9 Normal

25.0 – 29.9 Overweight

30.0 and above Obese

To calculate BMI based on weight in pounds (wt_lb) and height in inches (ht_in), use this

formula :

703 X wt_lb

ht_in2

99

switch (IntegerExpression)

{

case ConstantExpression:

//place one or more

//statement here

case ConstantExpression:

//place one or more

//statement here

//case statements may be repeated as many

//times as necessary

default :

//place one or more

//statements here

}

The switch Statement

The switch statement lets the value of a variable or expression determines

where the program will branch. A branch occurs when one part of a program

causes another part to execute. The if/else if statement allows your

program to branch into one of several possible paths. It performs a series

of tests (usually relational) and branches when one of these tests is true.

The switch statement is similar mechanism. It however, tests the value

of an integer expression and then uses that value to determine

which set of statements to branch to. Here is the format of the switch

statement:

5.7

 The expression following the word case must be an integer or constant. It cannot

be a variable, and it cannot be expressions such as x < 22 or n == 50.

100

Program 5-8

// The switch statement in this program tells the user something

// he or she already knows: what they just entered!

#include <iostream.h>

int main()

{

char choice;

cout << "Enter A, B, or C: ";

cin >> choice;

switch (choice)

{

case 'A': cout << "You entered A.\n";

break;

case 'B': cout << "You entered B.\n";

break;

case 'C': cout << "You entered C.\n";

break;

default: cout << "You did not enter A, B, or C!\n";

}

return 0;

}

Program Output with Example Input Shown in Bold

Enter A, B, or C : B [Enter]

You entered B.

Program Output with Example Input Shown in Bold

Enter A, B, or C : F [Enter]

You did not enter A, B, or C!

Program 5-8 shows how simple switch statement works.

The first case statement is case ‘A’:, the second is case ‘B’:, and the third

is case ‘C’:. These statements mark where the program is to branch to if

the variable choice contains the values ‘A’, ‘B’, or ‘C’. (Remember, character

variables and literals are considered integers). The default section is

branched to if the user enters anything other than A, B, or C.

101

switch (choice)

{

case 'A': cout << "You entered A.\n";

break;

case 'B': cout << "You entered B.\n";

break;

case 'C': cout << "You entered C.\n";

break;

default: cout << "You did not enter A, B, or C!\n";

}

Program 5-9

Notice the break statements that are in the case ‘A’, case ‘B’, and case ‘C’

sections.

The case statements show the program where to start executing in the

block and the break statements show the program where to stop. Without

the break statements, the program would execute all of the lines from the

matching case statement to the end of the block.

Program 5-9 is a modification of Program 5-8, without the break

statements.

102

// The switch statement in this program tells the user something

// he or she already knows: what they just entered!

#include <iostream.h>

int main()

{

char choice;

cout << "Enter A, B, or C: ";

cin >> choice;

switch (choice)

{

case 'A': cout << "You entered A.\n";

case 'B': cout << "You entered B.\n";

case 'C': cout << "You entered C.\n";

default: cout << "You did not enter A, B, or C!\n";

}

return 0;

}

Without the break statement, the program “falls through” all of the

statements below the one with the matching case expression. Sometimes

this is what you want. Program 5-10 lists the features of three TV models

a customer may choose from. The Model 100 has remote control. The Model

200 has remote control and stereo sound. The Model 300 has remote

control, stereo sound, and picture-in-a-picture capability. The program

uses a switch statement with carefully omitted breaks to print the features

of the selected model.

Program Output with Example Input Shown in Bold

Enter A, B, or C : A [Enter]

You entered A.

You entered B.

You entered C.

You did not enter A, B, or C!

Program Output with Example Input Shown in Bold

Enter A, B, or C : C [Enter]

You entered C.

You did not enter A, B, or C!

103

// This program is carefully constructed to use the "fallthrough"

// feature of the switch statement.

#include <iostream.h>

int main()

{

int modelNum; // Model number

// Get a model number from the user.

cout << "Our TVs come in three models:\n";

cout << "The 100, 200, and 300. Which do you want? ";

cin >> modelNum;

// Display the model's features.

cout << "That model has the following features:\n";

switch (modelNum)

{

case 300: cout << "\tPicture-in-a-picture.\n";

case 200: cout << "\tStereo sound.\n";

case 100: cout << "\tRemote control.\n";

break;

default: cout << "You can only choose the 100,";

cout << "200, or 300.\n";

}

return 0;

}

Program 5-10

Another example of how useful this “fall through” capability can be is when

you want the program to branch to the same set of statements for multiple

case expressions. For instance, Program 5-11 asks the user to select a

grade of pet food. The available choices are A, B, and C. The switch

statement will recognize either upper or lowercase letters.

Program Output with Example Input Shown in Bold

Our TVs come in three models:

The 100, 200, and 300. Which do you want? 100 [Enter]

That model has the following features:

Remote control

Program Output with Example Input Shown in Bold

Our TVs come in three models:

The 100, 200, and 300. Which do you want? 200 [Enter]

That model has the following features:

Stereo sound

Remote control

Program Output with Example Input Shown in Bold

Our TVs come in three models:

The 100, 200, and 300. Which do you want? 300[Enter]

That model has the following features:

Picture-in-a-picture

Stereo sound

Remote control

Program Output with Example Input Shown in Bold

Our TVs come in three models:

The 100, 200, and 300. Which do you want? 500[Enter]

That model has the following features:

You can only choose the 100, 200, or 300.

104
4

// The switch statement in this program uses the "fall through"

// feature to catch both uppercase and lowercase letters entered

// by the user.

#include <iostream.h>

int main()

{

char feedGrade;

// Get the desired grade of feed.

cout << "Our pet food is available in three grades:\n";

cout << "A, B, and C. Which do you want pricing for? ";

cin >> feedGrade;

// Display the price.

switch(feedGrade)

{

case 'a':

case 'A': cout << "30 cents per pound.\n";

break;

case 'b':

case 'B': cout << "20 cents per pound.\n";

break;

case 'c':

case 'C': cout << "15 cents per pound.\n";

break;

default: cout << "That is an invalid choice.\n";

}

return 0;

}

Program 5-11

105
5

Program Output with Example Input Shown in Bold

Our pet food is available in three grades:

A, B, and C. Which do you want pricing for? b [Enter]

20 cents per pound.

Program Output with Example Input Shown in Bold

Our pet food is available in three grades:

A, B, and C. Which do you want pricing for? B [Enter]

20 cents per pound.

 Checkpoint

1. Explain why you cannot convert the following if/else if statement into a switch

statement.

if (temp == 100)

x = 0;

else if (population > 1000)

x = 1;

else if (rate < .1)

x = -1;

2. What is wrong with the following switch statement?

switch (temp)

{

case temp < 0 : cout << “Temp is negative. \n”;

break;

case temp == 0: cout << “Temp is zero.\n”;

break;

case temp > 0 : cout << “Temp is positive. \n”;

break;

}

3. What will the following program display?

int funny = 7, serious =5;

funny = serious * 2;

switch (funny)

{

case 0 : cout << “That is funny.\n”;

break;

case 30 : cout <<”That is serious.\n”;

break;

case 32 : cout <<”That is seriously funny.\n”;

break;

default : cout << funny << endl;

}

106

4. Complete the following program skeleton by writing a switch statement that displays “one”

if the user has entered 1, “two” if the user has entered 2, and “three” if the user has

entered 3. If the number other than 1,2, or 3 is entered, the program should display an error

message.

#include <iostream.h>

int main ()

{

int userNum;

cout << “Enter one of the numbers 1,2, or 3: “;

cin >> userNum;

//

// Write the switch statement here.

//

return 0;

}

5. Rewrite the following program. Use a switch statement instead of the if/else if

statement.

#include <iostream.h>

int main ()

{

int selection;

cout <<”Which formula do you want to see ? \n\n”;

cout <<”1. Area of a circle \n”;

cout <<”2. Area of a rectangle \n”;

cout <<”3. Area of a cylinder \n”;

cout <<”4. None of them! \n”;

cin >> selection;

if (selection == 1)

cout << “Pi times radius squared \n”;

else if (selection == 2)

cout << “Length times width \n”;

else if (selection == 3)

cout << “Pi times radius squared times height\n”;

else if (selction == 4)

cout << “Well okay then, good bye! \n”;

else

cout << “Not good with numbers, eh? \n”;

return 0;

}

107

Instructions: Find the true and false statement below. Then,

rewrite the remaining false statements so they are true.

1. Three basic control structures are sequence, selection, and

pseudocode.

2. Programmers must convert an assembly language program

into machine language before the computer can execute, or

run, the program.

3. Programmers use a sequence control structure to show

program modules graphically.

4. A sequence control structure tells the program which action to

take, based on a certain condition.

Quiz Yourself Online: Do Self Test in the E-Learning

What will the following program display?

int funny = 7, serious =5;

funny = serious * 2;

switch (funny)

{

case 0 : cout << “That is funny.\n”;

break;

case 30 : cout <<”That is serious.\n”;

break;

case 32 : cout <<”That is seriously funny.\n”;

break;

default : cout << funny << endl;

}

108

KEY TERM

SUMMARY

• There are three forms of the if statement if, if-else and nested if-else

• Use the switch and break statements

• The differences between these control structures are also given.

if Menu

Switch .. break assembler

If/else Selection

Nested if

If/else if

REFERENCEES

Tony Gaddis, Starting Out with C++ - Early Objects (10th edition) ,Pearson,

2020.

109

for

do..while

while

Loops

Introduction to Loop

A loop is part of a program that repeats. It is a control structure that causes

a statement or group of statements to repeat. C++ has three looping

control structures: the while loop, the do..while loop, and the for loop.

TOPIC

6

Introduction to Computer System

LEARNING OUTCOMES

By the end of topic, you should be able to:

1. Implement C++ program using repetition structure such

as for, while and do-while.

2. Differentiate between for, while and do-while statements

6.1

110

while (expression)

statement;

The while Loop

The while loop has two important parts:

1. An expression that is tested for a true of false value, and

2. A statement or block that is repeated as long as the expression is

true.

Here is the general format of the while loop:

In the general format, expression is any expression that can be evaluated

as true or false, and statement is any valid C++ statement. The first line

shown in the format is sometimes called the loop header. It consists of the

key word while followed by an expression enclosed in parentheses.

Here’s how the loop works: the expression is tested, and if it is true, the

statement is executed. This cycle repeats until the expression is false.

The statement that is repeated is known as the body of the loop. It is also

considered a conditionally executed statement, because it is executed only

under the condition that the expression is true.

Notice there is no semicolon after the expression in parentheses. Like the

if statement, the while loop is not complete without the statement that

follows it.

If you wish the while loop to repeat a block of statements, its format is:

6.2

111

while (expression)

{

statement;

statement;

// Place as many statements here

// as necessary

}

Programs 6-1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

// This program demonstrates a simple while loop.

#include <iostream.h>

int main()

{

int number = 1;

while (number <= 5)

{

cout << "Hello\n";

number++;

}

cout << "That's all!\n";

return 0;

15 }

Program Output

Hello

Hello

Hello

Hello

Hello

That’s all!

The while loop works like an if statement that executes over and over.

As long as the expression inside the parentheses is true, the

conditionally executed statement or block will repeat. Program 6-1

uses the while loop to print “Hello” five times.

Let’s take a closer look at this program. In line 7 an integer variable,

number, is defined and initialized with the value 1. In line 9 the

while loop begins with this statement:

while (number <=5)

This statement tests the variable number to determine whether it is less

than or equal to 5. If it is, then the statements in the body of the loop (line

11 and 12) are executed:

cout << “Hello \n”;

number ++;
112

The statement in line 11 prints the word “Hello”. The statement in line 12

uses the increment operator to add one to number. This is the last

statement in the body of the loop, so after it executes, the loop starts over.

It tests the expression number <= 5 again, and if it is true, the statements

in the body of the loop are executed again. This cycle repeats until the

expression number <= 5 is false.

Each repetition of loop is known as iteration. This loop will perform five

iterations because the variable number is initialized with the value 1, and

it is incremented each time the body of the loop is executed. When the

expression number <= 5 is tested and found to be false, the loop will

terminate and the program will resume execution at the statement that

immediately follows the loop.

Test this expression

while (number <= 5)

{

If the expression is true, perform

these statements

cout << “Hello\n”;

number ++;

}

After executing the body of the loop, start over.

The while loop Is a Pretest Loop

The while loop is known as a pretest loop, which means it tests its

expression before each iteration. Notice the variable definition in Line 6 of

Program 6-1:

int number = 1;

The number variable is initialized with the value 1. If the number had been

initialized with a value that is greater than 5, as shown in the following

program segment, the loop would never execute:

113

int number = 6;

while (number <= 5)

{

cout << “Hello\n”;

number++;

}

An important characteristic of the while loop is that the loop will never

iterate if the test expression is false to start with. If you want to be sure

that a while loop executes the first time, you must initialize the relevant

data in such a way that the test expression starts out as true.

Using the while Loop for Input Validation

The while loop is especially useful for validating input. If an invalid value

is entered, a loop can require that the user re-enter it as many times as

necessary. For example, the following loop asks a number in the range of

1 through 100:

cout << “Enter a number in the range 1 – 100:”;

cin >> number;

while (number < 1 || number > 100)

{

cout << “ERROR : Enter a value in the range 1 -100: “;

cin >> number;

}

114

Is the

value
Yes

No

Read another

value

Display an

error message

Read the first

value

This code first allows the user to enter a number. This takes place just

before the loop. If the input is valid, the loop will not execute. If the input

is invalid, however, the loop will display an error message and require the

user to enter another number. The loop will continue to execute until the

user enters a valid number. The general logic of performing input validation

is shown in Figure 6-1.

The read operation that takes place just before the loop is called a priming

read. It provides the first value for the loop to test. Subsequent values are

obtained by the loop.

Programming 6-2 calculates the number of soccer teams a youth league

may create, based on a given number of players and a maximum number

of players per team. The program uses while loops to validate user input.

115

Programs 6-2

116

/ This program calculates the number of soccer teams

// that a youth league may create from the number of

// available players. Input validation is demonstrated

// with while loops.

#include <iostream.h>

int main()

{

int players, // Number of available players

teamPlayers, // Number of desired players per team

numTeams, // Number of teams

leftOver; // Number of players left over

// Get the number of players per team.

cout << "How many players do you wish per team?\n";

cout << "(Enter a value in the range 9 - 15): ";

cin >> teamPlayers;

// Validate the input.

while (teamPlayers < 9 || teamPlayers > 15)

{

cout << "You should have at least 9 but no\n";

cout << "more than 15 per team.\n";

cout << "How many players do you wish per team? ";

cin >> teamPlayers;

}

// Get the number of players available.

cout << "How many players are available? ";

cin >> players;

// Validate the input.

while (players <= 0)

{

cout << "Please enter a positive number: ";

cin >> players;

}

// Calculate the number of teams.

numTeams = players / teamPlayers;

 Checkpoint

1. Write an input validation loop that asks the user to enter a number in the range 10 through

25.

2. Write an input validation loop that asks the user to enter ‘Y’, ‘y’, ‘N’, or ‘n’.

3. Write an input validation loop that asks the user to enter “Yes” or “No”.

Program Output with Example Input Shown in Bold

How many players do you wish per team?

(Enter a value in the range 9-15): 4 [Enter]

You should have at least 9 but no

more than 15 per team.

How many players do you wish per team? 12[Enter]

How many players are available? -142[Enter]

Please enter a positive number: 142[Enter]

There will be 11 teams with 10 players left over.

// Calculate the number of leftover players.

leftOver = players % teamPlayers;

// Display the results.

cout << "There will be " << numTeams << " teams with ";

cout << leftOver << " players left over.\n";

return 0;

}

117

Programs 6-3

Program Output

Number Number Squared

118

Counters

A counter is a variable that is regularly incremented or decremented each

time a loop iterates. Sometimes it’s important for a program to control or

keep track of the number of iterations a loop performs. For example,

Program 6-3 displays a table consisting of the numbers 1 through 10 and

their squares, so, its loop must iterate 10 times.

1 1

2 4

3 9

4 16

5 25

6 36

7 49

8 64

9 81

10 100

// This program displays the numbers 1 through 10 and

// their squares.

#include <iostream.h>

int main()

{

int num = 1; //Initialize the counter.

cout << "Number Number Squared\n";

cout << "

while (num <= 10)

{

cout << num << "\t\t" << (num * num) << endl;

num++; //Increment the counter.

}

return 0;

\n";

}

6.3

do

statement;

while (expression);

do

{

statement;

statement;

// Place any statements here if necessary.

} while (expression);

In Program 6-3, the variable num, which starts at 1, is incremented each

time through the loop. When num reaches 11 the loop stops. num is used

as a counter variable, which means it is regularly incremented in each

iteration of the loop. In essence, num keeps count of the number of

iterations the loop has performed.

The do-while Loop

The do-while loop is a posttest loop which means its expression is tested

after each iteration.

The do-while loop looks something like an inverted while loop. Here is the

do-while loop’s format when the body of the loop contains only a single

statement:

Here is the format of the do-while loop when the body of the loop

contains multiple statements:

6.4

119

 NOTE : The do-while loop must be terminated with a semicolon.

int x = 1;

while (x < 0)

cout << x << endl;

int x = 1;

do

cout << x << endl;

while (x < 0);

Expressi
True

False

statement (s)

The do-while loop is a post-test loop. This means it does not test its

expression until it has completed an iteration. As a result, the do-while

loop always performs at least one iteration, even if the expression is false

to begin with. This differs from the behavior of a while loop, which you will

recall is a pretest loop. For example, in the following while loop the cout

statement will not execute at all:

But the cout statement in the following do-while loop will execute once

because the do-while loop does not evaluate the expression x < 0 until

the end of the iteration.

Figure 6-2 illustrates the logic of the do-while loop.

You should use the do-while loop when you want to make sure the loop

executes at least once. For example, Program 6-4 averages a series of

three test scores for a student. After the average is displayed, it asks the user if he

or she wants to average another set of test scores. The program repeats

as long as the user enters Y for yes.

120

Program Output

Enter 3 scores and I will average them : 80 90 70 [Enter]

The average is 80.

Do you want to average another set? (Y/N) y [Enter]

Enter 3 scores and I will average them : 60 75 88 [Enter]

The average is 74.3333

Do you want to average another set? (Y/N) n [Enter]

When this program was written, the programmer had no way of knowing

the number of times the loop would iterate. This is because the loop asks

the user if he or she wants to repeat the process. This type of loop is known

as a user-controlled loop, because it allows the user to decide the

number of iterations.

121

// This program averages 3 test scores. It repeats as

// many times as the user wishes.

#include <iostream.h>

int main()

{

int score1, score2, score3; // Three scores

double average; // Average score

char again; // To hold Y or N input

do

{

// Get three scores.

cout << "Enter 3 scores and I will average them: ";

cin >> score1 >> score2 >> score3;

// Calculate and display the average.

average = (score1 + score2 + score3) / 3.0;

cout << "The average is " << average << ".\n";

// Does the user want to average another set?

cout << "Do you want to average another set? (Y/N) ";

cin >> again;

} while (again == 'Y' || again == 'y');

return 0;

}

Programs 6-4

Programs 6-5

/ This program displays a menu and asks the user to make a

// selection. A do-while loop repeats the program until the

// user selects item 4 from the menu.

#include <iostream>

#include <iomanip>

int main()

{

int choice; // Menu choice

int months; // Number of months

double charges; // Monthly charges

// Constants for membership rates

const double ADULT = 40.0;

const double SENIOR = 30.0;

const double CHILD = 20.0;

// Set up numeric output formatting.

cout << fixed << showpoint << setprecision(2);

do

{

// Display the menu.

cout << "\n\t\tHealth Club Membership Menu\n\n";

cout << "1. Standard Adult Membership\n";

cout << "2. Child Membership\n";

cout << "3. Senior Citizen Membership\n";

cout << "4. Quit the Program\n\n";

cout << "Enter your choice: ";

cin >> choice;

Using do-while with Menus

The do-while loop is a good choice for repeating a menu. Program 6-5 uses

a do-while loop to repeat the program until the user selects item from the

menu.

122

// Validate the menu selection.

while (choice < 1 || choice > 4)

{

cout << "Please enter 1, 2, 3, or 4: ";

cin >> choice;

}

// Validate and process the user's choice.

if (choice != 4)

{

// Get the number of months.

cout << "For how many months? ";

cin >> months;

// Respond to the user's menu selection.

switch (choice)

{

case 1: charges = months * ADULT;

break;

case 2: charges = months * CHILD;

break;

case 3: charges = months * SENIOR;

}

// Display the monthly charges.

cout << "The total charges are $";

cout << charges << endl;

}

} while (choice != 4);

return 0;

}

123

Program Output

Health Club Membership Menu

1. Standard Adult Membership

2. Child Membership

3. Senior Citizen Membership

4. Quit the Program

Enter your choice: 1 [Enter]

For how many months? 12 [Enter]

The total charges are $480.00

int count = 10;

do

cout << “Hello World \n”;

while (count ++ <1);

 Checkpoint

1. What will the following program segments display?

a.

b.

c.

1.

2.

3.

4.

Health Club Membership Menu

Standard Adult Membership

Child Membership

Senior Citizen Membership

Quit the Program

Enter your choice: 4 [Enter]

124

int count=0, funny=1, serious=0, limit=4;

do

{

funny++;

serious +=2;

}while(count++ < limit);

cout << funny << “ “ << serious << “ “;

cout << count << endl;

int v = 0;

do

cout << v++;

while (v < 5);

for (initialization; test; update)

statement;

The for Loop

The for loop is ideal for performing a known number of iterations.

In general, there are two categories of loops: conditional loops and count-

controlled loops. A conditional loop executes as long as a particular

condition exists. For example, an input validation loop executes as long as

the input value is invalid. When you write a conditional loop, you have no

way of knowing the number of times it will iterate.

Sometimes you know the exact number of iterations that a loop must

perform. A loop that repeats a specific number of times is known as a count-

controlled loop. For example, if the loop asks the user to enter the sales

amounts for each month in the year, it will iterate twelve times. In essence,

the loop counts to twelve and asks the user to enter a sales amount each

time it takes a count. A count-controlled loop must possess three elements:

1. It must initialize a counter variable to a starting value.

2. It must test the counter variable by comparing it to a maximum

value. When the counter variable reaches its maximum value, the

loop terminates.

3. It must update the counter variable during each iteration. This is

usually done by incrementing the variable.

The first line of the for loop is the loop header. After the keyword for, there

are three expressions inside the parentheses, separated by semicolons.

(Notice there is not a semicolon after the third expression). The first

expression is the initialization expression. It is normally used to initialized

a counter variable to its starting value. This is the first action performed by

the loop, and it is done once. The second expression is the test expression.

This is an expression that controls the execution of the loop. As long as this

expression is true, the body of the for loop will repeat. The for loop is a

pretest loop, so it evaluates the test expression before each iteration. The

third expression is the update expression. It executes at the end of each

125

6.5

Step 4 : Perform the update expression,

then go back to Step 2.

True
count<=

False

Increment

count

cout

statement

Assign 1 to

count

iteration. Typically, this is a statement that increments the loop’s counter

variable.

Here is an example of a simple for loop that prints “Hello” five times:

for (count = 1; count <= 5; count ++)

cout << “Hello” << endl;

Figure 6-3 illustrates the sequence of events that takes place during the

loop’s execution. Notice that Steps 2 through 4 are repeated as long as the

test expression is true.

Figure 6-4 shows the loop’s logic in the form of a flowchart.

126

Step 1 : Perform the initialization expression

cout << “Hello” << endl; Step 3 : Execute the body of

the loop

for (count = 1; count <= 5; count ++)

Step 2 : Evaluate the test expression. If it is true,

go to step 3. Otherwise, terminate the loop.

for (number = 1; number <= 10; number ++)

cout << number << “ “;

Notice how the counter variable, count, is used to control the number of

times that the loop iterates. During the execution of the loop, this variable

takes on the values 1 through 5, and when the test expression count <= 5

is false, the loop terminates. Also notice that in this example the count

variable is used only in the loop header, to control the number of loop

iterations. It is not used for any other purpose. It is also possible to use the

counter variable within the body of the loop. For example, look at following

code:

The counter variable in this loop is number. In addition to controlling the

number of iterations, it is also used in the body of the loop. This loop will

produce the following output:

1 2 3 4 5 6 7 8 9 10

Program 6-6 shows another example of a for loop that uses its counter

variable within the body of the loop. This is yet another program that

displays a table showing the numbers 1 through 10 and their squares.

127

Program Output

Number Number Squared

// This program demonstrates a user controlled for loop.

#include <iostream.h>

int main()

{

int num; // Loop counter variable

int maxValue; // Maximum value to display

// Get the maximum value to display.

cout << "I will display a table of numbers and\n";

cout << "their squares. How high should I go? ";

cin >> maxValue;

cout << "\nNumber Number Squared\n";

cout << " \n";

for (num = 1; num <= maxValue; num++)

cout << num << "\t\t" << (num * num) << endl;

return 0;

}

1 1

2 4

3 9

4 16

5 25

6 36

7 49

8 64

9 81

10 100

Programs 6-6

128

Update expression

int num = 1;

while (num <= 10)

{

cout << num << “\t\t” << (num*num) << endl;

num++;

}

Test expression

Initialization expression

Test expression Update expression

for (num = 1; num <= 10; num++)

cout << num << “\t\t” << (num*num) << endl;

Initialization expression

Using the for Loop Instead of while or do-while

You should use the for loop instead of the while or do-while loop in any

situation that clearly requires an initialization, uses a false condition to stop

the loop, and requires an update to occur at the end of each loop iteration.

Figure below shows how the while loop and the for loop in each have

initialization, test, and update.

Other Forms of the Update Expression

You are not limited to using increment statements in the update expression.

Here is a loop that displays all the even numbers from 2 through 100 by

adding 2 to its counter:

for (num=2; num<=100; num+=2)

cout << num << endl;

129

And here is a loop that counts backward from 10 down to 0:

for (num=10; num>=0; num--)

cout << num << endl;

Creating a User Controlled for Loop

Sometimes you want the user to determine the maximum value of the

counter variable in a for loop, and therefore determine the number of times

the loop iterates. Instead of displaying the numbers 1 through 10 and their

squares, this program allows the user to enter the maximum value to

display.

Before the loop, this program asks the user to enter the highest value to

display. This value is stored in the maxValue variable:

cout << “I will display a table of numbers and \n”;

cout << “their squares. How high should I go? “;

cin >> maxValue;

The for loop’s test expression then uses this value as the upper limit for

the control variable:

for (num=1; num <= maxValue; num++)

In this loop, the num variable takes on the values 1 through maxValue,

and then the loop terminates.

130

Program Output

I will display a table of numbers and

their squares. How high should I go? 5 [Enter]

// This program demonstrates a user controlled for loop.

#include <iostream.h>

int main()

{

int num; // Loop counter variable

int maxValue; // Maximum value to display

// Get the maximum value to display.

cout << "I will display a table of numbers and\n";

cout << "their squares. How high should I go? ";

cin >> maxValue;

cout << "\nNumber Number Squared\n";

cout << " \n";

for (num = 1; num <= maxValue; num++)

cout << num << "\t\t" << (num * num) << endl;

return 0;

}

Number Number Squared

1 1

2 4

3 9

4 16

5 25

Programs 6-7

131

 Checkpoint

1. Name the three expressions that appear inside the parentheses in the for loop’s header.

2. You want to write a for loop that displays “I love to program” 50 times. Assume

that you will use a counter variable named count.

a. What initialization expression will you use?

b. What test expression will you use?

c. What update expression will you use?

d. Write the loop.

3. What will the following program segments display?

a. for (int count = 0; count < 6; count ++)

cout << (count + count);

b. for (int value = -5; value < 5; value++)

cout << value;

c. int x;

for (x=5; x<=14; x+=3)

cout << x << endl;

cout << x << endl;

4. Write a for loop that displays your name 10 times.

132

5. Write a for loop that displays all of the odd numbers, 1 through 49.

6. Write a for loop that displays every fifth number, zero through 100.

133

Keeping a Running Total

A running total is a sum of numbers that accumulates with each iteration

of a loop. The variable used to keep the running total is called an

accumulator.

Programs that calculate the total of a series of numbers typically use two

elements:

• A loop that reads each number in the series

• A variable that accumulates the total of numbers as they are read.

The variable that is used to accumulate the total of the numbers is called

an accumulator. It is often said that the loop keeps a running total because

it accumulates the total as it reads each number in the series.

Let’s look at a program that calculates a running total.

134

6.6

// This program takes daily sales figures over a period of time

// and calculates their total.

#include <iostream.h>

#include <iomanip.h>

int main()

{

int days; // Number of days

double total = 0.0; // Accumulator, initialized with 0

// Get the number of days.

cout << "For how many days do you have sales figures? ";

cin >> days;

// Get the sales for each day and accumulate a total.

for (int count = 1; count <= days; count++)

{

double sales;

cout << "Enter the sales for day " << count << ": ";

cin >> sales;

total += sales; // Accumulate the running total.

}

// Display the total sales.

cout << fixed << showpoint << setprecision(2);

cout << "The total sales are $" << total << endl;

return 0;

}

Program Output

Programs 6-8

135

1

136

// This program calculates the total number of points a

// soccer team has earned over a series of games. The user

// enters a series of point values, then -1 when finished.

#include <iostream.h>

int main()

{

int game = 1, // Game counter

points, // To hold a number of points

total = 0; // Accumulator

cout << "Enter the number of points your team has earned\n";

cout << "so far in the season, then enter -1 when finished.\n\n";

cout << "Enter the points for game " << game << ": ";

cin >> points;

while (points != -1)

{

total += points;

game++;

cout << "Enter the points for game " << game << ": ";

cin >> points;

}

cout << "\nThe total points are " << total << endl;

return 0;

}

Programs 6-9

Sentinels

A sentinel is a special value that marks the end of a list of values. Program

6-8, in the previous section, requires the user to know in advance the

number of days he or she wishes to enter sales figures for. Sometimes the

user has a list that is very long and doesn’t know how many items there

are. In other cases, the user might be entering several lists and it is

impractical to require that every item in every list be counted.

A technique that can be used in these situations is to ask the user to enter

a sentinel at the end of the list. A sentinel is a special value that cannot be

mistaken as a member of the list and signals that there are no more values

to be entered. When the user enters the sentinel, the loop terminates.

6.7

The value -1 was chosen for the sentinel in this program because it is not

possible for a team to score negative points. Notice that this program

performs a priming read in the highlighted line to get the first value. This

makes it possible for the loop to immediately terminate if the user enters -

1 as the first value. Also note that the sentinel value is not included in the

running total.

 Checkpoint

1. Describe the difference between pretest loops and posttest loops?

2. What is the difference between while loop and the do-while loop?

3. Which loop should you use in situations where you wish the loop to repeat until the test

expression is false, but the loop should execute at least one time?

4. Which loop should you use when you know the number of required iterations?

Program Output

Enter the number of points your team has earned

so far in the season, then enter -1 when finished.

Enter the points for game 1: 7 [Enter]

Enter the points for game 2: 9 [Enter]

Enter the points for game 3: 4 [Enter]

Enter the points for game 4: 6 [Enter]

Enter the points for game 5: 8 [Enter]

Enter the points for game 6: -1 [Enter]

The total points are 34

137

5. Write a for loop that displays the following set of numbers:

0, 10, 20, 30, 40, 50 …. 1000

6. Write a loop that asks the user to enter a number. The loop should iterate 10 times and keep

a running total of the numbers entered.

7. Convert the following while loop to a do while loop:

int x=1;

while (x > 0)

{

cout << “Enter a number : ”;

cin >> x;

}

8. Convert the following do-while loop to a while loop:

char sure;

do

{

cout <<”Are you sure you want to quit?”;

cin >> sure;

} while (sure != ‘Y’ && sure != ‘N’);

9. Convert the following while loop to a for loop:

138

int count = 0;

while (count < 50)

{

cout << “count is” << count << endl;

count ++;

}

10. Convert the following for loop to a while loop:

for (int x =50; x>0; x--)

{

cout << x << “seconds to go.\n”;

}

11. The following program has errors. Find as many as you can.

//this program adds two numbers entered by the user

int main ()

{

int num1, num2;

char again;

while (again == ‘y’|| again == ‘Y’)

cout << “Enter a number: “;

cin >> num1;

cout << “Enter another number: “;

cin >> num2;

cout << “Their sum is << (num1 + num2) << endl;

cout << “Do you want to do this again? “;

cin >> again;

return 0;

}

12. Ocean Levels

139

Instructions: Find the true or false statement below. Then, rewrite the
remaining false statements so they are true.
1. The idea of inheritance makes object-oriented programming more

reusable then code generated by top-down design.
2. Java is the ideal development language, which is why other

programming languages are beginning to lose their importance.
3. Prototyping is a form of rapid application development (RAD), which

enables programmers to build software that executes incredibly

Quiz Yourself Online: Do Self Test in the E-Learning

Assuming the ocean’s level is currently rising at about 1.5 millimeters per year, write a

program that displays a table showing the number of millimeters that the ocean will have

risen each year for the next 25 years.

13. Calories Burned

Running on a particular treadmill you burn 3.9 calories per minute. Write a program that

uses a loop to displays a table showing the number of calories burned after 10, 15, 20, 25,

and 30 minutes.

140

1. Write a C++ program to print alphabets from a to z using for

loop. How to print alphabets using loop in C++ programming.

Logic to print alphabets form a to z using for loop in C++

programming.

2. Write a C program to print all odd numbers from 1 to n using

for loop. How to print odd numbers from 1 to n using loop in C

programming. Logic to print odd numbers in a given range in C

programming.

KEY TERM

SUMMARY

• Introduced to the three repetition constructs while, do-while and for

statements

• The initialization, expression and counter which are important for all

repetition constructs are explained.

while Pretest loop

Do-while User controlled loop

for Sentinels

Counters

Post test loop

141

C++ is a procedural language. It has functional features that enable us to

structure our programs better. So far, the program examples given are

easy and small. In fact, all program statements can be put into one function

which is the main () function. This structure is not suitable for large

programs because it makes the programs hard to read and understood.

Proper code arrangement is needed so that it can clarify logical structure

and flow of program execution. This will make sure programs are easier to

read, understand and maintained.

TOPIC

7

Functions

LEARNING OUTCOMES

By the end of topic, you should be able to:

1. Define functions.

2. Write function prototypes

3. Write C++ program that invoke functions

142

Figure 7-1 illustrates this idea by comparing two programs: one that uses

a long complex function containing all of the statements necessary to solve

a problem, and another that divides a problem into smaller problems, each

of which are handled by separate function.

Figure 7-1

Another reason to write functions is that they simplify programs. If a

specific task is performed in several places in a program, a function can be

written once to perform that task, and then be executed anytime it is

needed. This benefit of using functions is known as code reuse because you

are writing the code to perform that task, and then reusing it each time you

need to perform the task.

143

void function4 ()

{

statement;

statement; function 4

statement;

}

void function3 ()

{

statement;

statement; function 3

statement;

}

void function2 ()

{

statement;

statement; function 2

statement;

}

int main ()

{

statement;

statement;

statement;

statement;

statement;

statement;

statement;

statement;

statement;

statement;

statement;

statement;

statement;

statement;

statement;

statement;

statement;

statement;

}

int main ()

{

statement;

statement; main function

statement;

}

This program has one long, complex

function containing all of the statements

necessary to solve a problem.

Defining and Calling Functions

CONCEPT : A function call is a statement that causes a function to execute.

A function definition contains the statements that make up the function.

When creating a function, you must write its definition. All function

definitions have the following parts:

Return

type

: A function can send a value to the part of the program

that executed it. The return type is the data type of the

value that is sent from the function.

Name : You should give each function a descriptive name. In

general, the same rules that apply to variable names also

apply to function names.

Parameter

list

: The program can send data into a function. The

parameter list is a list of variables that hold the values

being passed to the function.

Body : The body of a function is the set of statements that

perform the function’s operation. They are enclosed in a

set of braces.

Figure 7-2 shows the definition of a simple function with the various

parts labeled.

Return type Parameter List

Function Name

int main ()

{

cout << “Hello world\n”;

return 0;

}

Figure 7-2

The line in the definition that reads int main () is called the function

header.

144

7.1

Function Body

void displayMessage ()

{

cout <<”hello from the function displayMessage.\n”;

}

void Functions

You already know that a function can return a value. The main function in

all of the programs you have seen is declared to return an int value to the

operating system. The return 0; statement causes the value 0 to be

returned when the main function finishes executing.

It isn’t necessary for all functions to return a value, however. Some

functions simply perform one or more statements which follow terminate.

These are called void functions. The displayMessage function which follows

is an example.

The function’s name is displayMessage. This name gives an indication of

what the function does: It displays a message. You should always give

function names that reflect their purpose. Notice that the function’s return

type is void. This means the functions does not return a value to the part

of the program that executed it. Also notice the function has no return

statement. It simply displays a message on the screen and exits.

Calling a Function

A function is executed when it is called. Function main is called

automatically when a program starts, but all other functions must be

executed by function call statements. When a function is called, the

program branches to that function and execute the statements in its body.

Let’s look at Program 6-1, which contains two functions: main and

displayMessage.

The function displayMessage is called by the following statement line 18:

displayMessage();

145

146

Programs 7-1

Program Output

Hello from main.

Hello from the function displayMessage.

Back in function main again.

This statement is the function call. It is simply the name of the function

followed by a set of parentheses and a semicolon. Let’s compare with the

function header:

Function

Header

void displayMessage() is a part of function definition.

It declares the function’s

return type, name and

parameter list. It is not

terminated with a semicolon

because the definition of the

function’s body follows it.

Function

Call

displayMessage(); Is a statement that executes

the function, so it is

1

2

3

4

5

6

7

8

9

10

// This program has two functions: main and displayMessage

#include <iostream.h>

//***

// Definition of function displayMessage *

// This function displays a greeting. *

//***

void displayMessage()

{

cout << "Hello from the function displayMessage.\n";

11 }

12 //***

13 // Function main *

14 //***

15 int main()

16 {

17 cout << "Hello from main.\n";

18 displayMessage();

19 cout << "Back in function main again.\n";

20 return 0;

21 }

grams 7-2

// This program has three functions: main, first, and second.

#include <iostream.h>

terminated with a semicolon

like all other C++ statements.

Program 7-2 have many functions: main, first, and second.

In lines ** and ** of Program 7-2, function main contains a call to first

and a call to second:

first ();

second ();

Each call statement causes the program to branch to a function and then

back to main when the function is finished.

Pro

1

2

3

4 //***

5 // Definition of function first *

6 // This function displays a message. *

7 //***

8

9 void first()

10 {

11 cout << "I am now inside the function first.\n";

12 }

13

14 //***

15 // Definition of function second *

16 // This function displays a message. *

17 //***

18

19 void second()

20 {

21 cout << "I am now inside the function second.\n";

22 }

23

24 //***

25 // Function main *

26 //***

27

28 int main()

29 {

30 cout << "I am starting in function main.\n";

31 first(); // Call function first

32 second(); // Call function second

33 cout << "Back in function main again.\n";

34 return 0;

35 }

147

Program Output

I am starting in function main.

I am now inside the function first.

I am now inside the function second.

Back in function main again.

#include <iostream.h>

void func1()

{

cout << “Able was I\n”;

}

void func2()

{

cout << “I saw Elba\n”;

}

int main ()

{

int input;

cout << “Enter a number: ”;

cin >> input;

if (input < 10)

{

func1();

func2();

}

else

{

func2();

func1();

}

return 0;

}

 Checkpoint

1. Is the following a function header or a function call?

calcTotal ();

2. Is the following a function header or a function call?

void showResults ()

3. What will the output of the following program be if the user enters 10?

148

You must place either the function definition or the function prototype ahead of all calls to

the function. Otherwise the program will not compile.

Function Prototypes

CONCEPT : A function prototype eliminates the need to place a function

definition before all calls to the function.

Before the compiler encounters a call to a particular function, it must

already know the function’s return type, the number of parameters it

uses, and the type of each parameter.

One way ensuring that the compiler has this information is to place the

function definition before all calls to that function. Another method is to

declare the function with a function prototype. Here is a prototype for the

displayMessage function in Program 7-1:

void displayMessage ();

The prototype looks similar to the function header, except there is a

semicolon at the end. The statement above tells the compiler that the

function has a void return type (it doesn’t return a value) and uses no

parameters.

Function prototypes are usually placed near the top of a program so the

compiler will encounter them before any function calls. Program 7-3 is a

modification of Program 7-1. The definitions of the functions first and

second have been placed after main, and a function prototype has been

placed after the #include <iostream.h> statement.

When the compiler is reading Program 7-3, it encounters the calls to the

functions first and second in lines 12 and 13 before it has read the

definition of those functions. Because of the function prototypes,

however, the compiler already knows the return type and parameter

information of first and second.

149

7.2

Programs 7-3

1

2

3

4

5

6

7

8

9

// This program has three functions: main, First, and Second.

#include <iostream>

// Function Prototypes

void first();

void second();

int main()

10 {

11

12

13

14

15

16 }

17

cout << "I am starting in function main.\n";

first();

second();

// Call function first

// Call function second

cout << "Back in function main again.\n";

return 0;

18 //*************************************

19 // Definition of function first. *

20 // This function displays a message. *

21 //*************************************

22

23 void first()

24 {

25 cout << "I am now inside the function first.\n";

26 }

27

28 //*************************************

29 // Definition of function second. *

30 // This function displays a message. *

31 //*************************************

32

33 void second()

34 {

35 cout << "I am now inside the function second.\n";

36 }

150

Program Output

I am starting in function main.

I am now inside the function first.

I am now inside the function second.

Back in function main again.

void displayValue (int num)

{

cout << “The value is” << num << endl;

}

Sending Data into a Function

CONCEPT : When a function is called, the program may send values into

the function.

Values that are sent into a function are called arguments. By using

parameters, you can design your own functions that accept data this way.

A parameter is a special variable that holds a value being passed into a

function. Here is the definition of a function that uses a parameter:

Notice the integer variable definition inside the parentheses (int num).

The variable num is a parameter. This enables the function displayValue

to accept an integer values as an argument. Program 7-4 is a complete

program using this function.

151

7.3

Programs 7-4

First, notice the function prototype for displayValue in line 6:

void displayValue(int);

It is not necessary to list the name of the parameter variable inside the

parentheses. Only its data type is required. The function prototype shown

above could optionally have been written as:

void displayValue (int num);

However, the compiler ignores the name of the parameter variable in the

function prototype.

 152

Program Output

I am passing 5 to displayValue.

The value is 5

Now I am back in main.

1

2

3

4

5

6

7

8

9

10

11

12

13

// This program demonstrates a function with a parameter.

#include <iostream.h>

// Function Prototype

void displayValue(int);

int main()

{

cout << "I am passing 5 to displayValue.\n";

displayValue(5); // Call displayValue with argument 5

cout << "Now I am back in main.\n";

return 0;

14 }

15

16 //***

17 // Definition of function displayValue. *

18 // It uses an integer parameter whose value is displayed. *

19 //***

20

21 void displayValue(int num)

22 {

23 cout << "The value is " << num << endl;

24 }

In main, the displayValue function is called with the argument 5 inside

the parentheses. The number 5 is passed into num, which is

displayValue’s parameter. This is illustrated in figure 7-1.

void displayValue (int num)

{

cout << “The value is “ << num << endl;

}

Figure 7-1

Any argument listed inside the parentheses of a function call is copied into

the function’s parameter variable. In essence, parameter variables are

initialized to the value of their corresponding arguments. Program 7-5

shows the function displayValue being called several times with a different

argument being passed each time.

153

displayValue

154

Program 7-5

Program Output

I am passing several values to displayValue.

The value is 5

The value is 10

The value is 2

The value is 16

Now I am back in main.

// This program demonstrates a function with a parameter.

#include <iostream.h>

// Function Prototype

void displayValue(int);

int main()

{

cout << "I am passing several values to displayValue.\n";

displayValue(5); // Call displayValue with argument 5

displayValue(10); // Call displayValue with argument 10

displayValue(2); // Call displayValue with argument 2

displayValue(16); // Call displayValue with argument 16

cout << "Now I am back in main.\n";

return 0;

}

//***

// Definition of function displayValue. *

// It uses an integer parameter whose value is displayed. *

//***

void displayValue(int num)

{

cout << "The value is " << num << endl;

}

Each time the function is called in Program 7-5, num takes on a different

value. Any expression whose value could normally be assigned to num may

be used as an argument.

// This program demonstrates a function with three parameters.

#include <iostream.h>

// Function Prototype

void showSum(int, int, int);

int main()

{

int value1, value2, value3;

// Get three integers.

cout << "Enter three integers and I will display ";

cout << "their sum: ";

cin >> value1 >> value2 >> value3;

// Call showSum passing three arguments.

showSum(value1, value2, value3);

return 0;

}

//**

// Definition of function showSum. *

// It uses three integer parameters. Their sum is displayed. *

//**

void showSum(int num1, int num2, int num3)

{

cout << (num1 + num2 + num3) << endl;

}

Program 7-6

Program Output

Enter three integers and I will display their sum: 4 8 7 [Enter]

19

Often, it’s useful to pass several arguments into a function. Program 7-6

shows the definition of a function with three parameters.

In the function header for showSum, the parameter list contains three

variable definitions separated by commas:

void showSum (int num1, int num2, int num3)

155

showSum (value1, value2, value3) Function Call

The function prototype must list the data type of each parameter.

Like all variables, parameters have a scope. The scope of a parameter is limited to the body of the

function that uses it.

In the function call, the variables value1, value2, and value3 are passed as

arguments:

showSum(value1, value2, value3);

When a function with multiple parameters is called, the arguments are

passed to the parameters in order. This is illustrated in Figure 7-2.

void showSum (int num1, int num2, int num3)

{

cout << (num1+num2+num3) << endl;

}

Figure 7-2

The following function call will cause 5 to be passed into the num1

parameter, 10 to be passed into num2, and 15 to be passed into num3:

showSum (5, 10, 15);

However, the following function call will cause 15 to be passed into the

num1 parameter, 10 to be passed into num2, and 10 to be passed into

num3.

showSum (15, 5, 10);

156

Program 7-7

Passing Data by Value

CONCEPT : When an argument is passed into a parameter, only a copy of

the argument’s value is passed. Changes to the parameter do not affect

the original argument.

As you’ve seen in this chapter, parameters are special purpose variables

that are defined inside the parentheses of a function definition. They are

separate and distinct from the arguments that are listed inside the

parentheses of a function call. The values that are stored in the parameter

variables are copies of the arguments. Normally, when a parameter’s value

is changed inside a function it has no effect on the original argument.

Program 7-7 demonstrates this concept.

7.4

157

// This program demonstrates that changes to a function parameter

// have no affect on the original argument.

#include <iostream.h>

// Function Prototype void

changeMe(int);

int main()

{

int number = 12;

// Display the value in number.

cout << "number is " << number << endl;

// Call changeMe, passing the value in number

// as an argument.

changeMe(number);

// Display the value in number again.

cout << "Now back in main again, the value of "; cout <<

"number is " << number << endl;

return 0;

}

12

Original Argument

(in its memory location)

12

Even though the parameter variable myValue is changed in the changeMe

function, the argument number is not modified. The myValue variable

contains only a copy of the number variable.

The changeMe function does not have access to the original argument.

When only a copy of an argument is passed to a function, it is said to be

passed by value. This is because the function receives a copy of the

argument’s value, and does not have access to the original argument.

Figure 7-3 illustrates that a parameter variable’s storage location in

memory is separate from the original argument.

Figure 7-3

Function Parameter

(in its memory location)

Program Output

number is 12

Now the value is 0

Now back in main again, the value of number is 12

//**

// Definition of function changeMe. *

// This function changes the value of the parameter myValue. *

//**

void changeMe(int myValue)

{

// Change the value of myValue to 0.

myValue = 0;

// Display the value in myValue.

cout << "Now the value is " << myValue << endl;

}

158

 Checkpoint

1. Indicate which of the following is the function prototype, the function header, and the

function call:

void showNum (double num)

void showNum (double);

showNum (45.67);

2. Write a function named timesTen. The function should have an integer parameter named

number. When timesTen is called, it should display the product of number times ten. (Note :

just write the function. Do not write a complete program).

3. Write a function prototype for the timesTen function you wrote in Question 2.

4. What is the output of the following program?

159

#include <iostream.h> void

func1 (double, int); int main

()

{

int x = 0; double y

= 1.5;

cout << x << “ “ << y << endl;

func1 (y,x);

cout << x << “ “ << y << endl;

return 0;

}

void func1 (double a, int b)

{

cout << a << “ “ << b << endl;

a = 0.0;

b = 10;

cout << a << “ “ << b << endl;

}

argument

argument

argument

argument

Function Return Value

int sum(int num1, int num2)

{

int result;

result = num1 + num2;

return result;

}

Returning a Value form a Function

CONCEPT : A function may send a value back to the part of the program

that called the function.

You’ve seen that data may be passed into a function by way of parameter

variables. Data may also be returned from a function, back to the statement

that called it. Functions that return a value are appropriately known as

value-returning functions.

Although several arguments may be passed into a function, only one value

may be returned from it. Think of a function as having multiple

communication channels for receiving data (parameters), but only one

channel fro sending data (the return value). This is illustrated in Figure 7-

4.

Defining a Value-Returning Function

When you are writing value-returning function, you must decide what type

of value the function will return. This is because you must specify the data

type of the return value in the function header, and in the function

prototype. Recall that a void function, which does not return a value, uses

the key word void as its return type in the function header. A value-

returning function will use int, double, bool, or any other valid data type

in its header. Here is an example of a function that returns an int value :

160

7.5

Return Type

int sum (int num1, int num2)

return expression;

int sum(int num1, int num2)

{

return num1 + num2;

}

The name of this function is sum. Notice in the function header that the

return type is int, as illustrated in Figure 7-5.

Figure 7-5

This code defines a function named sum that accepts two int arguments.

The arguments are passed into the parameter variables num1 and num2.

Inside the function, a variable result, is defined. Variables that are defined

inside a function are called local variables. After the variable definition, the

parameter variables num1 and num2 are added, and their sum is

assigned to the result variable. The last statement in the function is

return result;

This statement causes the function to end, and it sends the value of the

result variable back to the statement that called the function. A value-

returning function must have a return statement written in the following

general format:

In the general format, expression is the value to be returned. It can be

any expression that has a value, such as a variable, literal or mathematical

expression. The value of the expression is converted to the data type that

the function returns, and is sent back to the statement that called the

function. In this case, the sum function returns the value in the result

variable.

However, we could have eliminated the result variable and returned the

expression num1 + num2, as shown in the following code:

161

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

// This program uses a function that returns a value.

#include <iostream>

// Function prototype

int sum(int, int);

int main()

{

int value1 = 20,

value2 = 40,

total;

// The first value

// The second value

// To hold the total

// Call the sum function, passing the contents of

// value1 and value2 as arguments. Assign the return

// value to the total variable.

total = sum(value1, value2);

// Display the sum of the values.

cout << "The sum of " << value1 << " and "

<< value2 << " is " << total << endl;

return 0;

22 }

23

24 //***

25 // Definition of function sum. This function returns *

26 // the sum of its two parameters. *

27 //***

28

29 int sum(int num1, int num2)

30 {

31 return num1 + num2;

32 }

Program 7-8

Program Output

The sum of 20 and 40 is 60

When writing the prototype for a value returning function, follow the same

conventions that we have covered earlier. Here is the prototype for the sum

function:

int sum(int, int);

Calling a Value-Returning Function

162

total = sum (value1, value2);

40

20

60
int sum(int num1, int num2)

{

return num1 + num2;

}

int x=10, y=15;

double average;

average = sum(x,y) / 2.0;

Here is the statement in line 16 that calls the sum function, passing value1

and value2 as arguments.

total = sum (value1, value2);

This statement assigns the value returned by the sum function to the total

variable. In this case, the function will return 60. Figure 7-6 shows how the

arguments are passed into the function and how a value is passed back

from the function.

Figure 7-6

When you call a value-returning function, you usually want to do something

meaningful with the value it returns. Program 7-7 shows a function’s return

value being assigned to a variable. This is commonly how return values are

used, but you can do many other things with them. For example, the

following code shows a mathematical expression that uses a call to the sum

function:

Figure 7-7

In the last statement, the sum function is called with x and y as its

arguments. The function’s return value, which is 25, is divided by 2.0. The

result, 12.5, is assigned to average.

163

int x=10, y=15;

cout << “The sum is” << sum (x,y) << endl;

Here is another example:

This code sends the sum function’s return value to cout so it can be

displayed on the screen. The message “The sum is 25” will be displayed.

164

#include <iostream.h>

void summer (int, int);

int fall (int, int);

int main ()

{

int Num1 = 2,Num2 = 5, x = 3 ;

summer (Num1, Num2);

cout << Num1 <<" " << Num2 << x << endl;

x = fall(Num1, Num2);

cout << Num1 <<" " << Num2 << x << endl;

}

void summer (int a, int b)

{

int Num1;

Num1 = b + 12;

a = 2 * b + 5;

b = Num1 + 4;

}

int fall (int u, int v)

{

int Num2;

Num2 = u + v;

return Num2;

}

 Checkpoint

1. What is the output of the following function?

165

2. Fill in the blanks with the most suitable command/token:

Isikan tempat kosong dengan arahan/token yang paling sesuai:

#include <iostream.h>

int (int, int) //the function prototype

int main ()

{

int , secnum, max;

cout << “Enter a number : “;

cin >> firstnum;

cout << “Great! Please enter a second number : “;

cin >> secnum;

 = findMax (firstnum, secnum); //the function is called here

cout << “\nThe maximum of the two number is” << max << endl;

return 0;

}

 findMax (int x, int y)

{ //start of function body

int maxnum;

if (x >= y)

maxnum = x;

else

maxnum = y;

return ; //return statement

}

166

3. Give the function prototype and function header for each of the following functions:

Berikan prototaip fungsi dan kepala fungsi bagi fungsi-fungsi berikut:

a. Function smallest that takes three integers, x, y, and z and returns an integer.

Fungsi smallest yang mengambil tiga nilai integer, x, y, dan z serta memulangkan nilai

integer.

Function Prototype

Prototaip Fungsi

Function Header

Kepala Fungsi

b. Function instructions that does not receive any parameter and does not return a value.

Fungsi instructions yang tidak menerima sebarang parameter dan tidak memulangkan

sebarang nilai.

Function Prototype

Prototaip Fungsi

Function Header

Kepala Fungsi

167

Write a program to find the factorial of a given number by using

a function in C++ programming language. The question is

about to print he factorial of a number y creating a function.

The factorial of a number n means the product of all the

numbers form 1 to n. How to create a function in C++

programming language to print the factorial of a number.

168
8

KEY TERM

Instructions: Find the true or false statement below. Then, rewrite the
remaining false statements so they are true.

1. The idea of inheritance makes object-oriented programming more
reusable then code generated by top-down design.

2. Java is the ideal development language, which is why other

programming languages are beginning to lose their importance.

3. Prototyping is a form of rapid application development (RAD), which
enables programmers to build software that executes incredibly

Quiz Yourself Online: Do Self Test in the E-Learning

Return type Function definition

Function Name Function prototype

Parameter List Function header

Function Body

Calling Function

REFERENCEES

Tony Gaddis, Starting Out with C++ - Early Objects (10th edition) ,Pearson,
2020.

SUMMARY

• Introduced about functions which are small programs that can do a

specific task

• How to define and call functions.

• Some functions that require parameters when called. Parameters are

input to the function

169

Introduction

CONCEPT : An array allow you to store and work with multiple values of

the same data type.

The variables you have worked with so far are designed to hold only one

value at a time. Each of the variable definitions in Figure 8-1 causes only

enough memory to be reserved to hold one value of the specified data type.

int count; Enough memory for 1int
 12314

float price; Enough memory for
1float

 56.981

char letter; Enough memory for
1char

 A

Figure 8-1

TOPIC

8

Arrays

LEARNING OUTCOMES

By the end of topic, you should be able to:

1. Define the concepts of array.

2. Define the initialized array

3. Use the array contents for processing it.

170

8.1

An array works like a variable that can store a group of values, all of the

same type. The values are stored together in consecutive memory

locations. Here is a definition of an array of integers:

int days [6];

The name of this array is days. The number inside the brackets is the

array’s size declarator. It indicates the number of elements, or values, the

array can hold. The days array can store six elements, each one an integer.

This is depicted in Figure 8-2.

days array : enough memory for six int values

Element 0 Element 1 Element 2 Element 3 Element 4 Element 5

An array’s size declarator must be a constant integer expression with a

value greater than zero. It can be either a literal, as in the previous

example, or a named constant, as shown in the following:

Const int NUM_DAYS = 6;

int days [NUM_DAYS];

Arrays of any data type can be defined. The following are all valid array

definitions:

float temperatures [100]; // array of 100 floats

char name [41]; // array of 41 characters

long units [50]; // array of 50 long integers

double sizes [1200]; // array of 1200 doubles

171

 NOTE: subscript numbering in C++ always starts at zero. The subscript of the last element in

an array is one less that the total number of elements in the array. This means that in the

array shown in Figure 8-3, the element hours[6]does not exist. hours[5] is the last

element in the array.

Accessing Array elements

CONCEPT: the individual elements of an array are assigned unique

subscripts. These subscripts are used to access the elements.

Even though an entire array has only one name, the elements may be

accessed and used as individual variables. This is possible because each

element is assigned a number known as a subscript. A subscript is used as

an index to pinpoint a specific element within an array. The first element is

assigned the subscript 0, the second element is assigned 1, and so forth.

The six elements in the array hours would have the subscripts 0 through 5.

This is shown in Figure 8-3.

Subscripts

0 1 2 3 4 5

int hours[6];

Figure 8-3

172

8.2

// This program asks for the number of hours worked

// by six employees. It stores the values in an array.

#include <iostream>

int main()

{

constint NUM_EMPLOYEES = 6;

int hours[NUM_EMPLOYEES];

// Get the hours worked by each employee.

cout<< "Enter the hours worked by "

<< NUM_EMPLOYEES << " employees: ";

cin>> hours[0];

cin>> hours[1];

cin>> hours[2];

cin>> hours[3];

cin>> hours[4];

cin>> hours[5];

// Display the values in the array.

cout<< "The hours you entered are:";

cout<< " " << hours[0];

cout<< " " << hours[1];

cout<< " " << hours[2];

cout<< " " << hours[3];

cout<< " " << hours[4];

cout<< " " << hours[5] <<endl;

return 0;

}

Program 8-1

Inputting and Outputting Array Contents

Array elements may be used with the cin and cout objects like any

other variable. Program 8-1 shows the array hours being used to store

and display values entered by the user.

8.3

173

Program Output with Example Input Shown in Bold

Enter the hours worked by 6 employees: 20 12 40 30 30 15 [Enter]

The hours you entered are: 20 12 40 30 30 15

1

2

3

4

5

6

7

8

9

10

11

12

13

// This program asks for the number of hours worked

// by six employees. It stores the values in an array.

#include <iostream.h>

int main()

{

constint NUM_EMPLOYEES = 6; // Number of employees

inthours[NUM_EMPLOYEES];

int count;

// Each employee's hours

// Loop counter

// Input the hours worked.

for (count = 0; count < NUM_EMPLOYEES; count++)

{

14 cout<< "Enter the hours worked by employee "

15 << (count + 1) << ": ";

16 cin>>hours[count];

17

18

19

}

// Display the contents of the array.

20 cout<< "The hours you entered are:";

21 for (count = 0; count < NUM_EMPLOYEES; count++)

22 cout<< " " <<hours[count];

23 cout<<endl;

24 return 0;

25 }

Program 8-2

Figure 8-4 shows the contents of the array hours with the values entered

by the user in the example output above.

hours [0] hours [1] hours [2] hours [3] hours [4] hours [5]

20 12 40 30 30 15

Figure 8-4

Even though the size declaratory of an array definition must be a constant

or a literal, subscript numbers can be stored in variables. This makes it

possible to use a loop to “cycle through” an entire array, performing the

same operation on each element. For example, look at the following

program code:

174

The first for loop, in line 12 through 17, prompts the user for each

employee’s hours. Take a closer look at lines 14 through 16:

cout<< "Enter the hours worked by employee "

<< (count + 1) << ": ";

cin>> hours[count];

Notice that the cout statement uses the expression count + 1 to display

the employee number, but the cin statement uses count as the array

subscript. This is because the hours for employee number 1 are stored in

hours[0], the hours for employee number 2 are stored in hours[1], and

so forth.

The loop in lines 20 through 23 also uses the count variable to step

through the array, displaying each element.

Program Output with Example Input Shown in Bold

Enter the hours worked byemployee 1: 20[Enter]

Enter the hours worked by employee 2: 12 [Enter]

Enter the hours worked by employee 3: 40 [Enter]

Enter the hours worked by employee 4: 30 [Enter]

Enter the hours worked by employee 5: 30 [Enter]

Enter the hours worked by employee 4: 15[Enter]

The hours you entered are: 20 12 40 30 30 15

175

 Checkpoint

1. Define the following arrays:

a. empNums, a 100-element array of ints.

b. payRates, a 25-element array of floats.

c. cityName, a 26-element array of chars.

2. What’s wrong with the following array definitions?

a. int readings [-1];

b. float measurements [4.5];

c. int size;

d. char name[size];

3. What would the valid subscript values be in four-element array of integers?

4. What is the output of the following code?

int values[5], count;

for (count = 0; count < 5; count++)

values [count] = count + 1;

for (count = 0; count < 5; count++)

cout<< values [count] <<endl;

176

Program 8-3

Array initialization

CONCEPT :Arrays may be initialized when they are defined.

Like regular variables, C++ allows you to initialize an array’s elements

when you create the array. Here is an example:

constint MONTHS = 12;

int days [MONTH] = {31,28,31,30,31,30,31,31,30,31,30,31};

The series of values inside the braces and separated with commas is called

an initialization list. These values are stored in the array elements in the

order they appear in the list. The first value, 31, is stored in days[0], the

second value, 28, is stored in days[1], and so forth. Figure 8-5 shows the

contents of the array after initialization.

Subscripts

0 1 2 3 4 5 6 7 8 9 10 11

31 28 31 30 31 30 31 31 30 31 30 31

Figure 8-5

Program 8-3 demonstrates how an array may be initialized

 177

// This program displays the number of days in each month.

#include <iostream.h>

int main()

{

constint MONTHS = 12;

int days[MONTHS] = { 31, 28, 31, 30,

31, 30, 31, 31,

30, 31, 30, 31};

for (int count = 0; count < MONTHS; count++)

{

cout<< "Month " << (count + 1) << " has ";

cout<< days[count] << " days.\n";

}

return 0;

}

8.4

Processing Array Contents

CONCEPT: Individual array elements are processed like any other type of

variable.

Processing array elements is no different than processing other variables.

For example, the following statement multiplies hours[3] by the variable

rate:

pay = hours[3] * rate;

Program 8-4 demonstrates the use of array elements in a simple

mathematical statement. A loop steps through each element of the array,

using the elements to calculate the gross of five employees.

Program Output with Example Input Shown in Bold

Month 1 has 31 days.

Month 2 has 28 days.

Month 3 has 31 days.

Month 4 has 30 days.

Month 5 has 31 days.

Month 6 has 30 days.

Month 7 has 31 days.

Month 8 has 31 days.

Month 9 has 30 days.

Month 10 has 31 days.

Month 11 has 30 days.

Month 12 has 31 days.

 178

8.5

// This program stores, in an array, the hours worked by

// employees who all make the same hourly wage.

#include <iostream.h>

#include <iomanip.h>

int main()

{

constint NUM_EMPLOYEES = 5;

int hours[NUM_EMPLOYEES];

doublepayrate;

// Input the hours worked.

cout<< "Enter the hours worked by ";

cout<< NUM_EMPLOYEES << " employees who all\n";

cout<< "earn the same hourly rate.\n";

for (int index = 0; index < NUM_EMPLOYEES; index++)

{

cout<< "Employee #" << (index + 1) << ": ";

cin>> hours[index];

}

// Input the hourly rate for all employees.

cout<< "Enter the hourly pay rate for all the employees: ";

cin>>payrate;

// Display each employee's gross pay.

cout<< "Here is the gross pay for each employee:\n";

cout<< fixed <<showpoint<<setprecision(2);

for (index = 0; index < NUM_EMPLOYEES; index++)

{

doublegrossPay = hours[index] * payrate;

cout<< "Employee #" << (index + 1);

cout<< ": $" <<grossPay<<endl;

}

return 0;

}

Program 8-4

179

Instructions: Find the true or false statement below. Then, rewrite the
remaining false statements so they are true.
1. The valid indexes for the array show, int myArray[20]; is 0-19.

2. The correct way to create an array named markScore that will hold

5 mark scores, is float markScore[5].
3. A two dimension array can also thought of as A table and an array

of arrays.
4. The declare an array of 5 characters, and initializes them to some

known values, is char array[5]={‘a’,’b’,’c’,’d’,’e’};

Quiz Yourself Online: Do Self Test in the E-Learning

Program Output with Example Input Shown in Bold

Enter the hours worked by 5 employees who all

earn the same hourly rate.

Employee #1 : 5 [Enter]

Employee #2 :10[Enter]

Employee #3 :15[Enter]

Employee #4 :20[Enter]

Employee #5 :40[Enter]

Enter the hourly pay rate for all the employees: 12.75 [Enter]

Here is the gross pay for each employee:

Employee #1 :$63.75

Employee #2 :$127.50

Employee #3 :$191.25

Employee #4 :$255.00

Employee #5 :$510.00

180

KEY TERM

Element Outputting Array Contents

Array contents Enough memory

Array initialization

Subscripts

Inputting Array contents

Write a C++ program to find the largest elements of a given array

of integers.

181

REFERENCEES

Tony Gaddis, Starting Out with C++ - Early Objects (10th edition) ,Pearson,
2020.

SUMMARY

 An array allow to store and work with multiple values of the same

data type.

 Elements of an array assign unique subscripts which use to access the

elements.

 Declare the use arrays of characters.

 Use both array notation to access elements of an array.

182

